Lectures on Homology of Symbols

Mariusz Wodzicki

Notes taken by
Paweł Witkowski

December 2006
1 The algebra of classical symbols
1.1 Local definition of the algebra of symbols 3
1.2 Classical pseudodifferential operators 5
1.3 Statement of results ... 7
1.4 Derivations of the de Rham algebra 7
1.5 Koszul-Chevalley complex 12
1.6 A relation between Hochschild and Lie algebra homology 13
1.7 Poisson trace .. 15
 1.7.1 Graded Poisson trace 17
1.8 Hochschild homology ... 18
1.9 Cyclic homology ... 21
 1.9.1 Further analysis of spectral sequence 25
 1.9.2 Higher differentials 30

A Topological tensor products .. 32

B Spectral sequences ... 34
 B.1 Spectral sequence of a filtered complex 34
 B.2 Examples .. 37
Chapter 1

The algebra of classical symbols

1.1 Local definition of the algebra of symbols

Let X be a C^∞-manifold (not necessarily compact), and E a vector bundle on X. Consider a coordinate patch

$$ f_U : U \rightarrow X, \quad U \subset \mathbb{R}^n. $$

The cotangent bundle $T^*X \rightarrow X$ pulls back to U

$$ T_0^*U \longrightarrow T^*U \longrightarrow T^*X $$

$$ \pi \downarrow \quad \downarrow \quad \downarrow f_U \Rightarrow X $$

The bundle T_0^*U is defined as $T^*U \setminus U$. There is an isomorphism

$$ T_0^*U \xrightarrow{\sim} U \times \mathbb{R}\times U \subset \mathbb{R}^n \times \mathbb{R}^n $$

$$ \pi \downarrow \quad \downarrow U $$

Using it we can denote the coordinates on T_0^*U by (u, ξ), where $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$, and $\xi = (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n$.

To each open set U we associate a section $a^U := \sum_{j=0}^{\infty} a^U_j$, where each a^U_j is a section of the bundle $\text{End}(\pi^*f_U^*E)$, where

$$ \pi^*f_U^*E \longrightarrow f_U^*E \longrightarrow E $$

$$ T_0^*U \quad \pi \quad U \quad f_U \quad X $$

More precisely by a^U_{m-j} we denote the homogeneous part of degree $m - j$

$$ a^U_{m-j} \in C^\infty(T_0^*U, \text{End}(\pi^*f_U^*E))(m - j). $$

There is a natural action of \mathbb{R}_+ on T_0^*X given by $t \cdot (u, \xi) := (u, t\xi)$. The infinitesimal action is provided by the Euler field

$$ \Xi = \sum_{i=1}^{n} \xi_i \partial_{\xi_i}. $$
The homogeneity condition for \(a^U_{m-j} \) is given by \(a^U_{m-j}(u, t\xi) = t^{m-j}a^U_{m-j}(u, \xi) \).

The section \(a^U \) belongs to the product

\[
\prod_{j=0}^{\infty} C^\infty(T_0^*U, \text{End}(\pi^*f^*_UE))(m-j)
\]

which has a natural structure of Fréchet space. With the norm

\[
|\xi| := \sqrt{\xi_1^2 + \cdots + \xi_n^2}
\]

we can write

\[
|\xi|^{-m}a^U_{m-j} \in C^\infty(T_0^*U, \text{End}(\pi^*f^*_UE))(0) \simeq C^\infty(S^*U, \text{End}(\pi^*f^*_UE)),
\]

where \(S^*U \) is the cosphere bundle \(T_0^*U/\mathbb{R}^n_+ \mathbb{R}_+U \). The cotangent bundle \(T^*X \to X \) is canonically oriented and \(S^*X \) is canonically oriented (even though we do not have the orientation on \(X \)). Now \(S^*U \) is a canonically oriented \((2n-1)\)-manifold and \(S^*U \simeq U \times S^{n-1} \).

The sections \(a^U \) are given locally, so we need a compatibility condition. We need a composition law such that it will depend on all jets, not only on 1-jets as usual composition.

\[
a^U \circ_b b^U : \sum_\alpha \delta_\alpha^a a^U D^{|\alpha|}_a b^U
\]

where \(\alpha = (a_1, \ldots, a_n), \quad a_i \in \mathbb{N} \)

\[
D_{u_i} := \frac{1}{i!} \partial_{u_i}, \quad D^{|\alpha|}_a = \frac{1}{\alpha!} D^\alpha_a = \frac{1}{\alpha! |\alpha|!} \partial^\alpha_u.
\]

If \(a^U \) is of order \(m \), \(b^U \) of order \(m' \) using the notation for classical symbols

\[
\mathcal{CS}^m_U(U, E) := \prod_{j=0}^{\infty} (T^*_jU, \text{End}(\pi^*f^*_UE))(m-j)
\]

we can write

\[
\circ_u : \mathcal{CS}^m_U(U, E) \times \mathcal{CS}^{m'}_{U'}(U, E) \to \mathcal{CS}^{m+m'}_{U'}(U, E), \quad m, m' \in \mathbb{C}.
\]

Now suppose we have two open sets \(U, V \in \mathbb{R}^n \) such that the images of charts \(f_U : U \to X, \)

\(f_V : V \to X \) have nonempty intersection \(f(U) \cap f(V) \). Denote

\[
U' := f^{-1}_U(f(U) \cap f(V)), \quad V' := f^{-1}_V(f(U) \cap f(V)),
\]

\[
f_{UV} := f^{-1}_U \circ f_V : V' \to U'.
\]

For a smooth map \(f : X \to Y \) there are induced maps

\[
Tf : TC \to TY, \quad (Tf)_x : (TX)_x \to (TY)_{f(x)},
\]

\[
T^*f : T^*X \to T^*Y, \quad (T^*f)_x : (T^*X)_x \leftarrow (T^*Y)_{f(x)}.
\]

Assume that \(Tf \) is invertible

\[
((Tf)_x)^{-1} : (TX)_x \to (TY)_{f(x)}
\]
Define a map
\[X \times TX \to Y \times TY, \quad (x, v) \mapsto (f(x), (Tf)_x(v)),\]
\[X \times T^*X \to Y \times T^*Y, \quad (x, \xi) \mapsto (f(x), ((Tf)^*)_x^{-1}(\xi)).\]

Now comes the question, to what extend \(a^V\) and \(((Tf)^*)^*a^U\) agree? We have
\[
(a^V) = (T^*f)^*((a^U) + (\text{arbitrary high order correction terms}))
\]
\[= (T^*f)_{UV}^*(\sum a_\lambda \partial x^a),\]
where
\[
\psi_a(u, \xi) = D_x^a e^{i(j_u^{-1}(z), (Tf^U)_x(\xi))}|_{z = u, v = (f^V_{UV} \circ f_U)(u)},
\]
so \(j_u^{-1}\) vanishes up to second order at point \(u \in U\). The \(\psi_a(u, \xi)\) are scalar valued functions on coordinate charts. They do not depend on symbols, only on manifold.

In the whole notes we will be using a projective tensor product of topological vector spaces described in the appendix (A).

The product
\[\text{CS}^m(X, E) \times \text{CS}^{m'}(X, E) \to \text{CS}^{m+m'}(X, E)\]
of Frechet spaces is associative. Define the algebra of symbols as
\[\text{CS}(X, E) : = \bigcup_{m \in \mathbb{Z}} \text{CS}^m(X, E).\]

Let \(a := \{a^U\}_{f_U : U \to X}\). The topology on \(\text{CS}(X, E)\) is defined as follows. We say that the net \(\{a_\lambda\}\) converges to a symbol \(a\) if for any \(m \in \mathbb{C}\) there exists \(\lambda_0\) such that \(a_\lambda - a \in \text{CS}^m(X, E)\) for all \(\lambda \geq \lambda_0\).

The subalgebra \(\text{CS}^0(X, E)\) is a Frechet algebra, and \(\text{CS}^{-j}(X, E), j \in \mathbb{Z}_+\) is a two sided ideal in \(\text{CS}^0(X, E)\).

Remark 1.1. The multiplication
\[\text{CS}^m(X, E) \otimes \text{CS}(X, E) \to \text{CS}(X, E)\]
is not continuous in both arguments.

1.2 Classical pseudodifferentials operators

Let \(A : \text{C}^\infty_c(X, E) \to \text{C}^\infty(X, E)\) be a pseudo differential operator. For a chart \(f_U : U \to X\) there is an operator
\[f_U^*A : \text{C}^\infty_c(U, f_U^*E) \to \text{C}^\infty(U, f_U^*E)\]
We can define it for \(\varphi \in \text{C}^\infty_c(U, f_U^*E)\) as follows. First take \((\varphi \circ f_U^{-1})|_{f_U(\text{supp} \varphi)}\) and then extend by 0, apply \(A\) and pullback, as in the following diagram
\[
\begin{array}{c}
\text{C}^\infty_c(X, E) \xrightarrow{A} \text{C}^\infty(X, E) \\
(f_U)| \downarrow \quad \quad \downarrow f_U \\
\text{C}^\infty_c(U, f_U^*E) \xrightarrow{f_U^*A} \text{C}^\infty(U, f_U^*E)
\end{array}
\]
Explicitly
\[
(f^u U_A) \varphi(u) = \int_{\mathbb{R}^n} \int_U e^{i(u-u',\xi)} \beta(u,u',\xi) \varphi(u') du' d\xi + (T \varphi)(u),
\]
where $\beta \in C^\infty(U \times T^* U, \text{End}(\pi^* f_U^* E))$ is called an amplitude,
\[
\beta(u,u',\xi) \sim \sum_{j=0}^{\infty} \beta_{m-j}(u,u',\xi),
\]
\[
\beta_{m-j}(u,u',t\xi) = t^{m-j} \beta(u,u',\xi),
\]
T is a smoothing operator
\[
(T \varphi)(u) = \int_U K(u,u') \varphi(u') |du'|,
\]
and
\[
|du| = |du_1 \wedge \cdots \wedge du_n|, \quad d\xi = \frac{1}{(2\pi)^n} |d\xi_1 \wedge \cdots \wedge d\xi_n|.
\]

By $\text{CL}^m(X,E)$ we denote the space of classical pseudo differential operators, and by $\text{CL}^m_{\text{prop}}(X,E)$ the subset of operators which take functions with compact support into functions with compact support. For $A \in \text{CL}^m(X,E)$ there is a decomposition $A = A_{\text{prop}} + S$ into a proper part A_{prop} and non proper smoothing part S. Define a Frechet space of arbitrary low order operators by
\[
\mathcal{L}^{-\infty}(X,E) := \bigcap_{m \in \mathbb{Z}} \text{CL}^m(X,E).
\]

There is an isomorphism
\[
\text{CL}^m(X,E)/\mathcal{L}^{-\infty}(X,E) \cong \text{CS}^m(X,E).
\]

Classical symbols have a product
\[
\text{CL}^m_{\text{prop}}(X,E) \times \text{CL}^{m'}_{\text{prop}}(X,E) \to \text{CL}^{m+m'-1}_{\text{prop}}(X,E), \quad m,m' \in \mathbb{C}.
\]

We define the algebra of classical symbols as
\[
\text{CL}(X,E) := \bigcup_{m \in \mathbb{Z}} \text{CL}^m(X,E).
\]

The space of smoothing operators $\mathcal{L}^\infty(X,E)$ is defined as a kernel
\[
\mathcal{L}^\infty(X,E) \rightarrow \text{CL}(X,E) \rightarrow \text{CS}(X,E)
\]
and if X is closed it is isomorphic (non canonically) to the space of rapidly decaying matrices
\[
\mathcal{L}^{-\infty} = \{(a_{ij})_{i,j=1,...,\infty} \mid |a_{ij}|(i+j)^N \to 0, \text{ as } i+j \to \infty\}.
\]

This is the noncommutative orientation class of a closed manifold and index theorem is the way to state that. Index measures to what extend this sequence is not split.

The map
\[
\text{CL}(X,E)/\mathcal{L}^{-\infty}(X,E) \rightarrow \text{CS}(X,E)
\]
is defined as follows. For a classical pseudo differential operator

\[A : C^\infty_c(X, E) \to C^\infty(X, E) \]

we take the amplitude

\[\beta^{U}(u, u', \xi) \sim \sum_{j=0}^{\infty} \beta^{U}_{m-j}(u, u', \xi) \]

and then define \(a^{U} \in \text{CS}(X, E) \) by

\[a^{U} := \left(e^{\sum_{i=1}^{n} \partial_{i} D_{u} \beta^{U}} \right) \bigg|_{u = u'}. \]

1.3 Statement of results

The main goal is to compute the Hochschild and cyclic homology of the algebra of symbols \(\text{CS}(X) \). Let \(T^{*}_{0} X = T^{*} X \setminus X \) and \(Y^c \) be the \(C^* \)-bundle over the cosphere bundle \(S^{*} X \) defined as

\[Y^c := T^{*}_{0} X \times_{\mathbb{R}^+} \mathbb{C}^* \]

\[S^{*} X \]

Theorem 1.2. There is a canonical isomorphism

\[\text{HH}_{q}(\text{CS}(X)) \simeq H^{2n-q}_{\text{dR}}(Y^c). \]

Regarding cyclic homology, consider on \(\text{HC}_{q}^{\text{cont}}(\text{CS}(X)) \) the filtration by the kernels of the iterated \(S \)-map:

\[\{0\} = S_{q0} \subset S_{q1} \subset \ldots \subset S_{qt} = \text{HC}_{q}(\text{CS}(X)), \]

where \(t = \left[\frac{q}{2} \right] \) and \(S_{qr} := \ker S^{1+r} \cap \text{HC}_{q}(\text{CS}(X)) \).

Theorem 1.3. The canonical map

\[I : \text{HH}_{*}(\text{CS}(X)) \to \text{HC}_{*}(\text{CS}(X)) \]

is injective. In particular

\[\text{HC}_{qr}(\text{CS}(X)) = \text{gr}_{r}^{S} \text{HC}_{q}(\text{CS}(X)) := S_{qr}/S_{q,r-1} \]

is canonically isomorphic with

\[H^{2n-q+2r}_{\text{dR}}(Y^c), \quad r = 0, 1, \ldots. \]

1.4 Derivations of the de Rham algebra

Let \(\mathcal{O} \) be a commutative \(k \)-algebra with unit, and \(k \) any commutative ring of coefficients. We define

\[\Omega^{\bullet}_{\mathcal{O}/k} := \Lambda^{\bullet}_{\mathcal{O}} \Omega^{1}_{\mathcal{O}/k}, \]

where \(\Omega^{1}_{\mathcal{O}/k} \) can be defined in a three ways:
• Serre’s picture

$$\Omega^1_{O/k} := I_\Delta / I^2_\Delta,$$

where $$I_\Delta := \text{ker}(O^2 \to O).$$

• Hochschild picture

$$\Omega^1_{O/k} := O^{\otimes 2} / bO^{\otimes 3}.$$

• Leibniz picture

$$\Omega^1_{O/k} := \frac{\mathcal{O}(df \mid f \in \mathcal{O})}{\mathcal{O}(d(f + g) - df - dg, \ dc = 0 \ (c \in k), \ d(fg) - fdg - gdf)}.$$

The differential $$d : \mathcal{O} \to \Omega^1_{O/k}$$ is defined in those three pictures as follows

- $$f \mapsto df \mod I^2_\Delta = (1 \otimes f - f \otimes 1) \ mod \ I^2_\Delta$$ (Serre’s picture),
- $$f \mapsto df \mod bO^{\otimes 3} = (1 \otimes f - f \otimes 1) \ mod \ bO^{\otimes 3}$$ (Hochschild picture),
- $$f \mapsto df$$ (Leibniz picture).

The derivation $$d_\Delta : \mathcal{O} \to I_\Delta \subset \mathcal{O} \otimes \mathcal{O}$$ is universal in the sense that if we have an $$\mathcal{O}$$-bimodule $$M$$ and a derivation $$\delta : \mathcal{O} \to M$$, then there exists a unique $$\mathcal{O}$$-bimodule map $$\bar{\delta}$$ such that the following diagram commutes

$$\begin{array}{ccc}
M & \xrightarrow{\delta} & M \\
\downarrow \delta & & \downarrow \delta \\
\mathcal{O} & \xrightarrow{d} & \mathcal{O}/I^2_\Delta \\
\downarrow \delta_\Delta & & \downarrow \delta_\Delta \\
I_\Delta & & I_\Delta
\end{array}$$

Let $$\text{Der}^m(\Omega^\bullet) = \text{Der}^m_{\text{fr}}(\Omega^\bullet)$$ denote the algebra of degree $$m$$ derivations, and

$$\text{Der}^\bullet(\Omega^\bullet) := \bigoplus_{m \in \mathbb{Z}} \text{Der}^m(\Omega^\bullet).$$

If $$\eta$$ is of degree $$p$$ and $$\zeta$$ of degree $$q$$, then for $$\delta \in \text{Der}^m(\Omega^\bullet)$$ we have

$$\delta(\eta \wedge \zeta) = \delta(\eta) \wedge \zeta + (-1)^p \eta \wedge \delta(\zeta).$$

$$\delta : \Omega^p \to \Omega^{p+m}.$$

Furthermore $$\text{Der}^\bullet(\Omega^\bullet)$$ is a super Lie algebra, that is the commutators satisfy the super Jacobi identity

$$0 = [[a, b], c] + (-1)^{|a|(|b|+|c|)} [[b, c], a] + (-1)^{|c|(|a|+|b|)} [[c, a], b].$$

Denote $$\delta_p := \delta|_{\Omega_p}.$$

Proposition 1.4. The set $$\text{Der}^m(\Omega^\bullet)$$ is naturally identified with the set of pairs $$(\delta_0, \delta_1)$$, where

$$\delta_0 : \mathcal{O} \to \Omega^m$$

is a $$k$$-linear derivation of $$\mathcal{O}$$ with values in $$\Omega^m$$,

$$\delta_1 : \Omega^1 \to \Omega^{m+1}.$$
is a k-linear map such that
\[
\delta_1(f\alpha) = \delta_0(f) \wedge \alpha + f\delta_1(\alpha).
\]
and
\[
\delta_1(\alpha)f - (-1)^{m+1}f\delta_1(\alpha) = 0,
\]
that is the super commutator $[\delta_1(\alpha), \alpha] = 0$.

Any derivation of degree m is uniquely determined by δ_0 and δ_1. Thus $\text{Der}^m(\Omega^*) = 0$ for $m < -1$.

For $\delta_0 = 0$ we have
\[
\delta(f\alpha_1 \wedge \cdots \wedge \alpha_p) = \sum_{i=1}^p (-1)^{m(i-1)}f\alpha_1 \wedge \cdots \wedge \delta_1(\alpha_i) \wedge \cdots \wedge \alpha_p.
\]

Similarly for any $\phi \in \text{Hom}_O(\Omega^1, \Omega^{m+1})$ there exists a corresponding derivation
\[
\delta_\phi(f\alpha_1 \wedge \cdots \wedge \alpha_p) := \sum_{i=1}^p (-1)^{m(i-1)}f\alpha_1 \wedge \cdots \wedge \phi(\alpha_i) \wedge \cdots \wedge \alpha_p.
\]

Example 1.5. (The de Rham derivation) Let $d_0 = d : O \to \Omega^1$. Now we will give a construction of $d_1 : \Omega^1 \to \Omega^2$. Consider a k-linear pairing
\[
O \times O \to \Omega^2, \quad (f, g) \mapsto df \wedge dg
\]
\[
\begin{array}{c}
O \times O \to \Omega^2 \\
\downarrow \\
O \otimes_k O \\
\downarrow \\
(O \otimes_k O)/I_\Lambda^2
\end{array}
\]

Now we can take a restriction to $I_\Lambda/I_\Lambda^2 \subset (O \otimes_k O)/I_\Lambda^2$. Recall that I_Λ consists of sums of terms of the form
\[
f_0d_\Lambda f_1 = f_0(1 \otimes f_1 - f_1 \otimes 1) = f_0 \otimes f_1 - f_0f_1 \otimes 1.
\]

Similarly I_Λ^2 consists of sums of terms of the form
\[
f_0d_\Lambda f_1d_\Lambda f_2 = f_0(1 \otimes f_1 - f_1 \otimes 1)(1 \otimes f_2 - f_2 \otimes 1) = f_0(1 \otimes f_1 f_2 + f_1 f_2 \otimes 1 - f_1 \otimes f_2 - f_2 \otimes f_1) = f_0 \otimes f_1 f_2 + f_0 f_1 f_2 \otimes 1 - f_0 f_1 \otimes f_2 - f_0 f_2 \otimes f_1
\]

The last expression maps to
\[
df_0 \wedge d(f_1 f_2) + d(df_0 f_1 f_2) \wedge d1 - d(f_0 f_1) \wedge df_2 - d(f_0 f_2) \wedge df_1 = df_0 \wedge ((df_1) f_2 + f_1 df_2) - (df_0 f_1) + f_0 df_1) \wedge df_2 - (df_0 f_2) + f_0 df_2) \wedge df_1 = f_2 df_0 \wedge df_1 + f_1 df_0 \wedge df_2 - f_1 df_1 \wedge df_2 - f_0 df_1 \wedge df_1 - f_2 df_0 \wedge df_1 = -f_0 df_1 \wedge df_2 - f_0 df_2 \wedge df_1
\]
\[
= 0.
\]
Proposition 1.6. Any derivation $\delta \in \text{Der}_k^m(\Omega^*)$ can be uniquely expressed as

$$[\delta_\varphi, d] + \delta_\psi$$

for $\varphi \in \text{Hom}_O(\Omega^1, \Omega^m), \psi \in \text{Hom}_O(\Omega^1, \Omega^{m+1})$.

Example 1.7. (O-linear derivation) For $m = -1 \text{ Der}^{-1}_k(\Omega^*) = \text{ Der}^{-1}_O(\Omega^*)$ and by restriction to Ω^1

$$\text{ Der}^{-1}_O(\Omega^*) = \text{ Hom}_O(\Omega^1, \Omega^*).$$

If $O = O(X)$, then $\text{ Der}_k O = T X$.

Suppose that $\delta, \delta' \in \text{ Der}_k^m(\Omega^*)$ are such that

$$\delta_0 = \delta|_O = \delta'|_O = \delta'_0.$$

Then

$$\delta - \delta' \in \text{ Der}_O^m(\Omega^*) \quad O - \text{linear}.$$

Suppose that we have a derivation $D \in \text{ Der}_k^1(\Omega^*)$. Then for any $\varphi \in \text{ Hom}_O(\Omega^1, \Omega^m)$ there is a $\delta_\varphi \in \text{ Der}_O^{m-1}(\Omega^*)$ and

$$[\delta_\varphi, D] \in \text{ Der}_O^m(\Omega^*)$$

$$[\delta_\varphi, D]|_0 = \delta_\varphi D = \varphi \circ D = d(\text{the de Rham derivation})$$

If there exists $d_1 : \Omega^1 \to \Omega^2$, k-linear and satisfying

$$d_1(f \alpha) = df \wedge \alpha + f d\alpha,$$

then there exists a derivation $d \in \text{ Der}_k^1(\Omega^*)$.

There is a natural identification between O-modules

$$\begin{array}{ccc}
\text{Der}(O, \Omega^m) & \longrightarrow & \text{ Hom}_O(\Omega^1, \Omega^m) \\
\downarrow & & \downarrow \\
\text{ Der}^{m-1}_O(\Omega^*) & &
\end{array}$$

Let $\eta = \varphi \circ d$ which on Ω^0 is $[\delta_\varphi, d]$. Then $i_\eta = \delta_\varphi$ is the interior product with derivation η. If $m = -1$ this is the classical product of differential forms with a given vector field. Define a Lie derivative with respect to η

$$L_\eta := [\delta_\varphi, d] = [i_\eta, d].$$

Then

$$[L_\eta, d] = [[i_\eta, d], d] = (-1)^{m-1}d i_\eta d - (-1)^m d i_\eta d = 0.$$
where $\deg \omega$. This is in analogy to the Cartan formula for Ω. For example if

$$\eta = m \in O$$

In case $m = 0$, for any function $f \in O$ let $f \cdot -$ denote the multiplication by the function f

$$[\delta f, d] = df - df \wedge \deg, \quad [\delta f, d] = df.$$

Remark 1.8. To prove identities like $\delta = \delta'$, where δ, δ' are O-linear derivations on Ω, it is enough to prove it on $dO \subset \Omega^1$. For example, for vector fields there is an identity

$$[\mathcal{L}_{\eta}, t_\xi] = [t_\eta, \mathcal{L}_\zeta] = t_{[\eta, \zeta]}.$$

The expressions are O-linear, so we can check the equalities by evaluating on $df, f \in O$.

For $\omega \in \Omega^p$ we have the formula

$$[\delta_{\omega} \wedge - , d]^2(\omega) = \begin{cases} 0 & m = 1 \\ \frac{1}{2}m d(\omega \wedge \omega) \wedge \omega & \text{if } m \text{ is odd } \neq 1 \\ (m + p) d\omega \wedge \omega & \text{if } m \text{ is even.} \end{cases}$$

For example if $m = 1 \varphi$ is the contact 1-form on \mathbb{A}^1, that is $\sum_{i=1}^m \xi_i dx_i$. Then

$$\omega = \mathcal{L}_{\xi_i^1} \omega = d\xi_i^1 \omega.$$

In case $m = 0$, for any function $f \in O$ let $f \cdot -$ denote the multiplication by the function f

$$[\delta f, d] = df - df \wedge \deg, \quad [\delta f, d] = df.$$

Let $\eta_1, \ldots, \eta_p \in \text{Der}_k(O)$ (vector fields if $O = O(X)$). Then there is a formula

$$[d, t_{\eta_1} \ldots t_{\eta_p}] = \sum_{1 \leq i \leq p} (-1)^{i-1} t_{\eta_1} \ldots \hat{t}_{\eta_i} \ldots t_{\eta_p} \mathcal{L}_{\eta_i} + \sum_{1 \leq i < j \leq p} (-1)^{i+j-1} t_{\eta_i} \ldots \hat{t}_{\eta_i} \ldots \hat{t}_{\eta_j} \ldots t_{\eta_j}.$$

where $\deg t_{\eta_i} = -1$ for all $i = 1, \ldots, p$. Similarly

$$[t_{\eta_1} \ldots t_{\eta_p}, d] = \sum_{1 \leq i \leq p} (-1)^{i-1} \mathcal{L}_{\eta_i} t_{\eta_1} \ldots \hat{t}_{\eta_i} \ldots t_{\eta_p} + \sum_{1 \leq i < j \leq p} (-1)^{i+j} \mathcal{L}_{\eta_i} \ldots \hat{t}_{\eta_i} \ldots \hat{t}_{\eta_j} \ldots t_{\eta_j}.$$

This is in analogy to the Cartan formula for $\omega \in \Omega^{p-1}$

$$(d\omega)(\eta_1, \ldots, \eta_p) = \sum_{1 \leq i \leq p} (-1)^{i-1} \mathcal{L}_{\eta_i} \omega(\eta_1, \ldots, \hat{\eta}_i, \ldots, \eta_p) + \sum_{1 \leq i < j \leq p} (-1)^{i+j} \omega([\eta_i, \eta_j], \eta_1, \ldots, \hat{\eta}_i, \ldots, \hat{\eta}_j, \ldots, \eta_p).$$
1.5 Koszul-Chevalley complex

Let m be a g-module, where g is a Lie k-algebra. This means that $[,] : g \otimes_k g \rightarrow g$ satisfies the Jacobi identity, each $g \in g$ acts as an endomorphism of a k-module m, and the map

$$g \rightarrow gl_k(m) = \text{Lie}(\text{End}_k(m)), \quad g \rightarrow \rho_g - \text{action of } g \text{ on } m$$

is a homomorphism of Lie-k-algebras. We have

$$\rho_{[g_1,g_2]} = [\rho_{g_1},\rho_{g_2}]$$

and $gl_k(m)$ has the right g-module structure

$$\tilde{\rho}_g(m) := mg,$$

$$mg_1g_2 - mg_2g_1 = (\tilde{\rho}_{g_2}\tilde{\rho}_{g_1} - \tilde{\rho}_{g_1}\tilde{\rho}_{g_2})(m) = [\tilde{\rho}_{g_2}\tilde{\rho}_{g_1}, \tilde{\rho}_g] = m[g_2,g_1].$$

This shows that $\tilde{\rho}_g \rightarrow gl(m)$ is an antihomomorphism of Lie algebras (it corresponds to the fact that the inverse $G \rightarrow G, g \mapsto g^{-1}$ corresponds to $g \mapsto -g$ on g).

Definition 1.9. Koszul-Chevalley complex of a Lie k-algebra g with coefficients in m

$$C_\ast(g,m) := m \otimes \Lambda_\ast^g, \quad \partial : C_p(g,m) \rightarrow C_{p+1}(g,m),$$

where

$$\partial(m \otimes g_1 \wedge \cdots \wedge g_p) := \sum_{1 \leq i \leq p} (-1)^{i-1} m \otimes g_1 \wedge \cdots \wedge \hat{g}_i \wedge \cdots \wedge g_p +$$

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j-1} m \otimes [g_i, g_j] \wedge g_1 \wedge \cdots \wedge \hat{g}_i \wedge \cdots \wedge \hat{g}_j \wedge \cdots \wedge g_p.$$

$$C_\ast(g,m) := \text{Alt}_\ast(g \times \cdots \times g, m), \quad \partial : C_{p-1}(g,m) \rightarrow C_p(g,m),$$

where for $\gamma \in \text{Alt}^{p-1}(g \times \cdots \times g,m)$ we define $\delta(\gamma) \in \text{Alt}^p(g \times \cdots \times g,m)$ by

$$\delta(\gamma)(g_1, \ldots, g_p) := \sum_{1 \leq i \leq p} (-1)^{i-1} g_i \gamma(g_1, \ldots, \hat{g}_i, \ldots, g_p) +$$

$$+ \sum_{1 \leq i < j \leq p} (-1)^{i+j-1} \gamma([g_i, g_j], g_1, \ldots, \hat{g}_i, \ldots, \hat{g}_j, \ldots, g_p).$$

In the next definition we use a relative Tor and Ext groups, which are the derived functors in the sense of relative homological algebra ([?], [?]).

Definition 1.10. Lie algebra homology and cohomology with coefficients in a g-module m

$$H_\ast(g,m) := H(C_\ast(g,m), \partial) \simeq \text{Tor}^\ast_{(\text{End}_g)^\ast} (k, m),$$

$$H_\ast(g,m) := H(C_\ast^\ast(g,m), \partial) \simeq \text{Ext}^\ast_{(\text{End}_g)^\ast} (k, m).$$
1.6 A relation between Hochschild and Lie algebra homology

Consider the following situation: A is an associative k-algebra with unit, M an A-bimodule. Let Lie$(A) = A$ as a k-module with commutator bracket $[a, b] := ab - ba$. Let $a \in A$ act on $m \in M$ by $m \mapsto am - ma$. Consider $d_\Delta: A \to A \otimes A^{op}$, $a \mapsto 1 \otimes a^{op} - a \otimes 1$,

$$[d_\Delta a, d_\Delta b] = -\left[1 \otimes a^{op}, b \otimes 1\right] - \left[a \otimes 1, 1 \otimes b^{op}\right] + \left[1 \otimes a^{op}, 1 \otimes b^{op}\right] + \left[a \otimes 1, b \otimes 1\right]$$

(because $A \otimes 1$ and $1 \otimes A^{op}$ commute in A)

$$= 1 \otimes [a^{op}, b^{op}] + [a, b] \otimes 1$$

$$= 1 \otimes [b, a]^{op} - [b, a] \otimes 1$$

$$= -d_\Delta [a, b].$$

Universal derivation is an antihomomorphism, so

$$-d_\Delta: \text{Lie}(A) \to \text{Lie}(A \otimes A^{op})$$

is a homomorphism of Lie algebras.

In what follows we will use many arguments based on spectral sequences, and the necessary basics of the theory is presented in appendix (B).

Let $R = \mathcal{U}(\text{Lie}(A))$, $S = A \otimes A^{op}$. Any bimodule N can be viewed as a left $A \otimes A^{op}$-module. The base change spectral sequence takes the form

$$E^2_{pq} = \text{Tor}^A_{p} (\text{Tor}^{\mathcal{U}(\text{Lie}(A))}_q (k, A \otimes A^{op}), N)$$

$$a \cdot (b \otimes c^{op}) = ab \otimes c^{op} - b \otimes a^{op}c^{op} = ab \otimes c^{op} - b \otimes (ca)^{op}$$

Assume that $\mathcal{U}(\text{Lie}(A))$ is flat over k. Then

$$\text{Tor}^A_p (\text{Tor}^{\mathcal{U}(\text{Lie}(A))}_q (k, A \otimes A^{op}), N) \simeq \text{Tor}^{\mathcal{U}(\text{Lie}(A))}_q (\text{H}_q (\text{Lie}(A); A \otimes A^{op}), N).$$

In our base change spectral sequence we get an edge homomorphism

$$\text{H}_p (\text{Lie}(A); N) \to \text{Tor}^A_p (\text{H}_0 (\text{Lie}(A); A \otimes A^{op}), N).$$

In general if g is a Lie algebra, and M a g-module, then $\text{H}_0 (g; M) = M_g$ - the coinvariants of the g-action. Thus we have a map from Lie algebra homology to Hochschild homology

$$\text{H}_p (\text{Lie}(A); N) \to \text{Tor}^A_p (\text{H}_0 (\text{Lie}(A); A \otimes A^{op}), N) = \text{Tor}^A_p (A, N) = \text{H}_p (A; N).$$

When k is of characteristic 0, that map, up to a sign, is induced by inclusion

$$\eta: C_\bullet (\text{Lie}(A); N) \to C_\bullet (A; N)$$

$$n \otimes a_1 \wedge \cdots \wedge a_p \mapsto \sum_{l_1, \ldots, l_p} (-1)^{l_1 - \cdots - l_p} n \otimes a_{l_1} \otimes \cdots \otimes a_{l_p},$$

where on the right hand side we have a sum over all permutations of the set $\{1, \ldots, p\}$, and $l_1 \ldots l_p$ denotes the sign of a permutation.
Proposition 1.11. The map η is a map of complexes, that is

$$b\eta = -\eta \partial,$$

where b is the Hochschild boundary, and ∂ the boundary of the Koszul-Chevalley complex.

Proof. On the left hand side we have:

$$b\eta(n \otimes a_1 \wedge \cdots \wedge a_p) = \sum_{l_1, \ldots, l_p} (-1)^{l_1-1} n a_{l_1} \otimes \cdots \otimes a_{l_p}$$

$$+ \sum_{1 \leq m \leq p-1} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} n a_{l_1} \otimes \cdots \otimes a_{l_m} a_{l_{m+1}} \otimes \cdots \otimes a_{l_p}$$

$$+ \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} a_{l_1} n a_{l_1} \otimes \cdots \otimes a_{l_{p-1}}$$

$$= \sum_{1 \leq i \leq p} (-1)^{i-1} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} n a_{l_1} \otimes a_{l_2} \otimes \cdots \otimes a_{l_p}$$

(because $l_2 \ldots l_p = l_2 \ldots l_p \cdot (-1)^{i-1}$)

$$- \sum_{1 \leq i \leq p} (-1)^{i-1} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} a_{l_1} n a_{l_1} \otimes \cdots \otimes a_{l_{p-1}}$$

(because $l_1 \ldots l_{p-1} = l_1 \ldots l_{p-1} \cdot (-1)^{p-i}$)

$$+ \sum_{1 \leq m \leq p-11} \sum_{1 \leq i \leq j \leq p} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} n a_{l_1} \otimes \cdots \otimes a_{l_m} a_{l_{m+1}} \otimes \cdots \otimes a_{l_p}$$

$$+ \sum_{1 \leq m \leq p-11} \sum_{1 \leq i \leq j \leq p} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} n a_{l_1} \otimes \cdots \otimes a_{l_m} a_{l_{m+1}} \otimes \cdots \otimes a_{l_p}$$

(because $l_1 \ldots l_p \cdot (-1)^m = l_1 \ldots l_{m-1} l_{m+2} \ldots l_p \cdot (-1)^{(i-1)+(j-1)}$)

$$+ \sum_{1 \leq m \leq p-11} \sum_{1 \leq i \leq j \leq p} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} n a_{l_1} \otimes \cdots \otimes a_{l_m} a_{l_{m+1}} \otimes \cdots \otimes a_{l_p}$$

$$+ \sum_{1 \leq m \leq p-11} \sum_{1 \leq i \leq j \leq p} \sum_{l_{1, \ldots, l_p}} (-1)^{l_1-1} n a_{l_1} \otimes \cdots \otimes a_{l_m} a_{l_{m+1}} \otimes \cdots \otimes a_{l_p}$$

$$= \eta \left(\sum_{1 \leq i \leq p} (-1)^i [a_i, n] \otimes a_1 \wedge \cdots \wedge \hat{a}_i \wedge \cdots \wedge a_p \right)$$

$$+ \sum_{1 \leq i \leq j \leq p} (-1)^{i+j} [a_i, a_j] \wedge a_1 \wedge \cdots \wedge \hat{a}_i \wedge \cdots \wedge \hat{a}_j \wedge \cdots \wedge a_p \right)$$

$$= -\eta \partial (n \otimes a_1 \wedge \cdots \wedge a_p).$$

\square
1.7 Poisson trace

Consider the Lie algebra of derivations Der $\mathcal{O} = \text{Der}_k \mathcal{O}$. The algebra \mathcal{O} is always a Der \mathcal{O}-module via the natural representation. Let $\varphi \in \Omega^p_{\mathcal{O}/k}$. Then it defines an alternating \mathcal{O}-linear map

$$\varphi: \text{Der} \mathcal{O} \times \cdots \times \text{Der} \mathcal{O} \to \mathcal{O}$$

$$((\eta_1, \ldots, \eta_p) \mapsto \varphi(\eta_1, \ldots, \eta_p) := \iota_{\eta_p} \ldots \iota_{\eta_1} \varphi \in \Omega^0 = \mathcal{O}).$$

There is an \mathcal{O}-linear map,

$$\Omega^p \to \text{Alt}^p \mathcal{O}(\text{Der} \mathcal{O}, \mathcal{O}) \hookrightarrow \text{Alt}^p_k(\text{Der} \mathcal{O}, \mathcal{O})$$

which transforms the de Rham differential d into δ

$$d \varphi \mapsto \delta(\iota_{\eta_p} \ldots \iota_{\eta_1} \varphi).$$

(Cartan’s picture of de Rham complex).

Let $\Omega^\text{vol} = \Omega^n$, where n is such that $\Omega^n \neq 0$, $d: \Omega^n \to \Omega^{n+1}$ identically 0. Then

$$C_\bullet(\text{Der} \mathcal{O}; \Omega^\text{vol}) = \Omega^\text{vol} \otimes_k \Lambda^\bullet_k \text{Der}_k \mathcal{O} \to \Omega^\text{vol} \otimes_\mathcal{O} \Lambda^\bullet \text{Der}_k \mathcal{O}$$

where the last epimorphism is \mathcal{O}-linearization and is an isomorphism if \mathcal{O} is smooth algebra of dim n.

Claim 1.12. The kernel of \mathcal{O}-linearization is a subcomplex of $C_\bullet(\text{Der} \mathcal{O}; \Omega^\text{vol})$.

For $\nu \in \Omega^\text{vol} = \Omega^n$

$$\nu \otimes \eta_1 \wedge \cdots \wedge \eta_p \mapsto \iota_{\eta_1} \ldots \iota_{\eta_p} \nu \in \Omega^{n-p} =: \Omega_p.$$

The composition

$$C_\bullet(\text{Der} \mathcal{O}; \Omega^\text{vol}) \to \Omega^\text{vol} \otimes_\mathcal{O} \Lambda^\bullet \text{Der}_k \mathcal{O}$$

is the map of complexes. It suffices to apply the formula for $[d, \iota_{\eta_1} \ldots \iota_{\eta_p}]$ only to n-forms.

$$(C_\bullet(\text{Der}_k \mathcal{O}, \Omega^\text{vol}), \partial) \to (\Omega_\bullet, d)$$

(Spencer’s picture of de Rham complex).

Now we fix the volume form ν, and denote

$$\text{Der}_k \mathcal{O}_\nu := \{\text{derivations annihilating } \nu\}.$$

There is an \mathcal{O}-module morphism

$$\mathcal{O} \to \Omega^\text{vol}, \quad f \mapsto f\nu,$$

$$C_\bullet(\text{Der}_k \mathcal{O}_\nu, \mathcal{O}) \to C_\bullet(\text{Der} \mathcal{O}, \Omega^\text{vol}) \to \Omega_\bullet$$

("Divergentless vector fields").

Suppose that $\mathcal{O} = \mathcal{O}(X)$, where X is a symplectic manifold of dimension $2n$, $\omega \in \Omega^2$ is closed and nondegenerate.

$$\omega: \text{Der} \mathcal{O} \to \Omega^1, \quad \eta \mapsto \iota_{\eta} \omega$$

is injective. Furthermore $\omega^n \in \Omega^\text{vol}$ and we can take $\nu = \omega^n$.

15
Define \(\text{Ham}(X, \omega) \subset \text{Der}_k \mathcal{O}_\omega \) as

\[
\text{Ham}(X, \omega) := \{ \eta \in \text{Der}_k \mathcal{O}_\omega \mid L_\eta \omega = 0 \}.
\]

Define \(\text{Poiss}(X, \omega) \) as an algebra \(\mathcal{O} \) with the Poisson bracket

\[
\{ f, g \} := \mathcal{L}_{H_f} g = \omega(H_f, H_g) = i_{H_f} i_{H_g} \omega,
\]

where \(H_f \) is the vector field characterized by

\[
i_{H_f} \omega = -df.
\]

There is a homomorphism of Lie algebras

\[
\text{Poiss}(X, \omega) \to \text{Ham}(X, \omega),
\]

and an \(\mathcal{O} \)-linear map of complexes

\[
C_\bullet(\text{Poiss}(X, \omega), \text{ad}) \to C_\bullet(\text{Ham}(X, \omega), \omega^n).
\]

\[
f_0 \otimes f_1 \wedge \cdots \wedge f_p \mapsto f_0 \omega^n \otimes f_1 \wedge \cdots \wedge f_p.
\]

There is also a map

\[
C_\bullet(\text{Ham}(X, \omega), \omega^n) \to \Omega_\bullet,
\]

\[
f_0 \omega^n \otimes f_1 \wedge \cdots \wedge f_p \mapsto f_0 i_{H_{f_1}} \cdots i_{H_{f_p}} \omega^n.
\]

We have

\[
\mathcal{L}_{H_f} = [d, i_{H_f}] \omega = 0.
\]

Proposition 1.13. For any \(f, g \in \mathcal{O} \)

\[
H_{f,g} = [H_f, H_g].
\]

Proof. It is sufficient to prove the corresponding identity for contractions

\[
i_{[H_f, H_g]} = i_{H_{f,g}}.
\]

We have

\[
i_{[H_f, H_g]} \omega = [\mathcal{L}_{H_f}, i_{H_g}] \omega
\]

\[
= \mathcal{L}_{H_f}(i_{H_g} \omega) - i_{H_g} \mathcal{L}_{H_f} \omega
\]

\[
= -\mathcal{L}_{H_f}(dg)
\]

\[
= -d(\mathcal{L}_{H_f} g)
\]

\[
= -d\{ f, g \}
\]

\[
= -i_{H_{f,g}}.
\]

\(\Box \)
There is a well defined map, called a **Poisson trace**

\[\text{ptr}_\bullet : (C_\bullet(\text{Poiss}(X, \omega); \text{ad}), \partial) \to (\Omega_\bullet, \delta). \]

Let \(Y \) be a symplectic manifold, \(\dim Y = 2n \), with a symplectic 2-form \(\omega \). Then we have a canonical morphism of chain complexes

\[\text{ptr} : C_\bullet(\text{Poiss}(Y, \omega); \text{ad}) \to \Omega_\bullet(Y), \]

where \(\Omega_q(Y) = \Omega^{\dim Y - q}(Y) \), given by

\[f_0 \otimes f_1 \wedge \cdots \wedge f_q \mapsto f_0 \iota_{Hf_1} \cdots \iota_{Hf_q} \omega^n. \]

An important special case is when \(Y \) is a symplectic cone, i.e. \(Y \) is acted upon by \(\mathbb{R}^+ \). Let \(\Xi \) be the corresponding Euler field (the image of \(t \frac{d}{dt} \)). We have \(t^* \omega = t \omega \) or equivalently \(L_\Xi \omega = \omega \).

1.7.1 Graded Poisson trace

We consider the graded algebra of functions on \(Y \)

\[\mathcal{O}_\bullet := \bigoplus_{m \in \mathbb{Z}} \mathcal{O}(m), \]

where

\[\mathcal{O}(m) := \{ f \in \mathcal{O} \mid L_\Xi f = mf \}. \]

Then the Poisson bracket \{\(, \)\} agrees with the grading in the following way

\[\{ \mathcal{O}(l), \mathcal{O}(m) \} \subseteq \mathcal{O}(l + m - 1). \]

Let

\[P_l := \mathcal{O}(l + 1), \quad P_\bullet := \bigoplus_{l \in \mathbb{Z}} P_l \]

be the graded Lie algebra when equipped with the Poisson bracket \{\(, \)\}. The map \(f \mapsto Hf \) is a homomorphism of Lie algebras \(\mathcal{O} \to P = \text{Poiss}(Y, \omega) \), and furthermore

\[L_\Xi Hf = (\deg(f) - 1) Hf. \]

To check this identity one computes

\[t_{[\Xi, Hf]} \omega = L_\Xi t_{Hf} \omega = -\deg(f) df + df = (1 - \deg(f)) df = (\deg(f) - 1) Hf \]

because \(t_{Hf} \omega = -df \). Thus there is a **graded Poisson trace**

\[\text{ptr}_\bullet : C_\bullet(P_\bullet, \text{ad}) \to \Omega_\bullet(Y) \]

\[\text{ptr}_\bullet : \bigoplus_{k \in \mathbb{Z}} C^{(k)}_\bullet(P_\bullet, \text{ad}) \to \Omega_\bullet(k + n)(Y), \]

where

\[C^{(k)}_\bullet(P_\bullet, \text{ad}) = (P_\bullet \otimes \Lambda^q P_\bullet)(k + q) \]

and \(\partial \) preserves \(k \). Explicitly we have

\[L_\Xi (f_0 t_{Hf_1} \cdots t_{Hf_q} \omega^n) = (l_0 + (l_1 - 1) + \ldots + (l_q - 1) + m) f_0 t_{Hf_1} \cdots t_{Hf_q} \omega^n \]

\[= ((l_0 + \ldots + l_q) + n - q) f_0 t_{Hf_1} \cdots t_{Hf_q} \omega^n, \]

\[(P_\bullet \otimes \Lambda^q P_\bullet)(l) \to \Omega_q(l - q) \]
1.8 Hochschild homology

Let $C_\bullet(CS(X))$ be the completed Hochschild complex of $CS(X)$. Define

$$C_\bullet^{(m)} := C_\bullet(CS(X))/F_{m-1}C_\bullet(CS(X)),$$

where $F_{m-1}C_\bullet(CS(X))$ is the filtration induced by order. Then

$$C_j = \lim_{m \to -\infty} C_j^{(m)}, \quad j \in \mathbb{N}$$

The complexes $C_\bullet^{(m)}$ inherit filtration from C_\bullet

$$\{0\} = F_{m-1}C_\bullet^{(m)} \subset F_mC_\bullet^{(m)} \subset \ldots$$

where

$$F_pC_\bullet^{(m)} := \begin{cases} F_pC_\bullet(CS(X))/F_{m-1}C_\bullet(CS(X)) & \text{for } p \geq m-1, \\ 0 & \text{for } p \leq m-1. \end{cases} \quad (1.4)$$

We have

$$C_j^{(m)} = \lim_{p \to -\infty} F_p^{(m)}, \quad m \in \mathbb{Z}, \quad j \in \mathbb{N}.$$

Let $HH_\bullet^{(m)}$ denote the homology of $C_\bullet^{(m)}$ and HH_\bullet the homology of C_\bullet. Our first objective will be to find $HH_\bullet^{(m)}$.

There is a Milnor short exact sequence

$$0 \to \lim^1 H_{q+1}(C_\bullet^{(m)}) \to HH_q(CS(X)) \to \lim H_q(C_\bullet^{(m)}) \to 0.$$

If the system $\{H_{q-1}(C_\bullet^{(m)})\}_{m \to -\infty}$ satisfies the Mittag-Leffler condition, then \lim^1 vanishes.

Suppose $\{V_\lambda\}$ is an inverse system of sets (k-modules). It satisfies Mittag-Leffler condition if for all λ the system of subsets $(\text{im}(V_\mu \to V_\lambda))$ for $\mu > \lambda$ stabilizes. The inverse system $\{V_\lambda\}$ can be treated as a sheaf \tilde{V} over the indexing set Λ with partial order topology. Then

$$\lim^P\{V_\lambda\} = H^P(\Lambda, \tilde{V}),$$

and in particular $\lim\{V_\lambda\} = \Gamma(\Lambda, \tilde{V})$.

Theorem 1.14 (Emmanouil). For $\Lambda = \omega$ - the first infinite ordinal, the inverse system of vector spaces $\{V_\lambda\}$ is Mittag-Leffler if and only if one of the following conditions is satisfied

$$\lim^1\{V_\lambda \otimes_k W\} = 0, \text{ for all vector spaces } W \text{ over } k, \quad (1.5)$$

$$\lim^1\{V_\lambda \otimes_k W\} = 0, \text{ for some infinite dimensional vector space } W \text{ over } k. \quad (1.6)$$

Recall that $T^*_0X = T^*X \setminus X$ and Y^c is the C^*-bundle over the cosphere bundle S^*X defined as

$$Y^c := T^*_0X \times_{\mathbb{R}^+} C^*$$

$$\downarrow C^*$$

$$S^*X$$
Consider the eigenspace of the action of the Euler field \(\Xi = \sum_{i=1}^{n} \xi_i \partial \xi_i \) on \(T^*_0 X \)

\[
\Omega^*(T^*_0 X)(m) \subset \Omega_{C^\infty}^*(T^*_0 X)
\]

\[
t^* \eta = t^m \eta
\]

Then

\[
\Omega^{**}(T^*_0 X) := \bigoplus_{m \in \mathbb{Z}} \Omega^*(T^*_0 X)(m)
\]

is a bigraded algebra whose cohomology is naturally isomorphic with \(H^*(Y^\circ) \). We denote it by \(H^*_{dR}(Y^\circ) \).

There is a spectral sequence \(\bigtriangledown_{(m),r} \) converging to \(HH_{(m)} \) which is associated with the filtration (1.4) of \(C^*(m) \). Its complete description is provided in the following proposition.

Proposition 1.15. Assume \(m \leq - \dim X = -n \). Then

a) the second term of a spectral sequence \(\bigtriangledown_{(m),r} \) which is associated with the filtration on \(C^*(m) \) which is induced by the order filtration as in (1.4) is given by

\[
\bigtriangledown_{(m),2} \simeq \begin{cases}
H^{n-p}_{dR}(Y^\circ) & q = n \\
\Omega^{2n-m-q}(n-q)/d\Omega^{2n-1-m-q}(n-q) & p = m \\
0 & \text{otherwise}
\end{cases}
\]

b) the spectral sequence \(\bigtriangledown_{(m),r} \) degenerates at \(\bigtriangledown^2 \)

c) the identification in a) are compatible with the spectral sequence morphisms induced by the canonical spectral sequence projections

\[
C^l_{(m)} \twoheadrightarrow C^m_{(m)}
\]

for \(l \leq m \).
Corollary 1.16. The inverse system of the homology groups \(\{ \text{HH}_p^{(m)} \}_{m \in \mathbb{Z}_{< -n}} \) satisfies Mittag-Leffler condition, in fact
\[
\text{HH}_p^{(l_1, m)} = \text{HH}_p^{(l_2, m)}
\]
for any \(l_1 \leq l_2 \leq m < -n \), where \(\text{HH}_p^{(l, m)} := \text{im}(\text{HH}_p^{(l)} \to \text{HH}_p^{(m)}) \).

Proof. From the proposition (1.15) we obtain a commutative diagrams whose rows are exact.

Consider a spectral sequence with \(\, 'E^0_{p\bullet} \) being the \(p \)-th component of the graded complex \(\text{gr}^F(\text{CS}(X)) \).

Taking homology with respect to the differential \(d^0_{p\bullet} : 'E^0_{p\bullet} \to 'E^0_{p, 1} \), we obtain
\[
'F^1_{pq} = \text{HH}_p^{(p+q)}(\mathcal{O}_*(X))(p),
\]
calculated in terms of differential forms.

If \(\mathcal{O} \) is a smooth algebra, there is a map of complexes
\[
(C_*, b) \to (\Omega^*, 0)
\]
\[
f_0 \otimes \cdots \otimes f_q \to f_0 d f_1 \cdots \wedge d f_q.
\]
But instead of this map we take
\[
f_0 \otimes \cdots \otimes f_q \to (-1)^q q! f_0 \xi_{H_1} \cdots \xi_{H_q} \omega^n.
\]
We can compose the two maps
\[
(C_\bullet(Lie(CS(X))), \partial) \longrightarrow (C_\bullet(CS(X)), b) \longrightarrow (\Omega_{\bullet \bullet}, d).
\]
The first map
\[
\eta: a_0 \otimes a_1 \wedge \cdots \wedge a_q \mapsto \sum_{l_1, \ldots, l_q} (-1)^{l_1 + \cdots + l_q} a_0 \otimes a_{l_1} \otimes \cdots \otimes a_{l_q},
\]
is a map of complexes, while the second one is a map of complexes only if \(d = 0\). But the composition is still a map of complexes.

We identified \(E_2^{(m),1}\) with \(\Omega_2^{2n-p-q}(n-q)\) for \(p \geq m\) and \(d^1\) with \(d_{dR}\).

To demonstrate that the spectral sequence degenerates at \(E_2\) one has to show that the only possibly nontrivial differentials
\[
d^{(m),p-m}_{p_n, p-n}: E^{(m),p-m}_{p_n, p-n} \longrightarrow E^{(m),p-m-1}_{m,n+p-m-1}
\]
all vanish. This is a consequence of the commutativity of the diagram
\[
\begin{array}{ccc}
E^{(m),p-m}_{p_n, p-n} & \longrightarrow & E^{(m),p-m-1}_{m,n+p-m-1} \\
\downarrow & & \downarrow \\
E^{(l),p-m}_{p_n, p-n} & \longrightarrow & E^{(l),p-m-1}_{m,n+p-m-1}
\end{array}
\]
for \(l < m\).

Now \(H_\bullet = HH_\bullet(CS(X))\) is the homology of the projective limit \(\lim C_\bullet^{(m)}\). The projective system \(C^{(m)}\) satisfies Mittag-Leffler condition. The same holds for the projective systems of homology groups \(\{HH_\bullet^{(m)}\}_{m \in \mathbb{Z}_{< n}}\) by corollary (1.16). Hence
\[
HH_j = \lim_m HH_j^{(m)} \simeq H_{dR}^{2n-j}(Y^c),
\]
and we proved the theorem.

Theorem 1.17. There is a canonical isomorphism
\[
HH_q(CS(X)) \simeq H_{dR}^{2n-q}(Y^c).
\]

1.9 Cyclic homology

We will use the Connes double complex \(B_\bullet(CS(X))\). The maps \(I, B, S\) which involve Hochschild and cyclic homology \(HH_\bullet, HC_\bullet\) are induced by morphism of filtered chain complexes.

\[
C_\bullet(CS(X)) \xrightarrow{I} \text{Tot}(B_\bullet(CS(X))) \xrightarrow{B} \text{Tot}(B_\bullet(CS(X)))[2]
\]

\[
\begin{array}{ccc}
CS(X) \otimes^3 & \xrightarrow{B} & CS(X) \otimes^2 \\
\downarrow & & \downarrow \\
CS(X) \otimes^2 & \xrightarrow{B} & CS(X)
\end{array}
\]

\[
\begin{array}{ccc}
CS(X) \otimes^2 & \xrightarrow{B} & CS(X) \\
\downarrow & & \\
CS(X)
\end{array}
\]

21
The first column is a Hochschild complex $C_{\bullet}(CS(X))$. The rest is the same complex but shifted diagonally by 1, so the total complex is shifted by 2.

Let us put

$$B_{\bullet}^{(m)} := B_{\bullet}/F_{m-1}B_{\bullet},$$

where $F_pB_{kl} := F_pC_{l-k}$. Much as we did before we consider the projective system of quotient complexes

$$\text{Tot } B_{\bullet}^{(m)} = \text{Tot } B_{\bullet}/F_{m-1}B_{\bullet}, \quad m \to -\infty.$$

Then we have

$$B_{kl}^{(m)} = \lim_{p \to -\infty} F_{pkl}^{(m)}, \quad m \in \mathbb{Z}, \ k, l \geq 0$$

and

$$F_{pkl}^{(m)} := F_pB_{kl}/F_{m-1}B_{kl}.$$

Let $HC_{\bullet}^{(m)}$ denote the homology of $\text{Tot } B_{\bullet}^{(m)}$, and HC_{\bullet} the homology of $\text{Tot } B_{\bullet}$.

Proposition 1.18. Assume that $m \leq 0$ and $q \geq 2n + 1$. Then there exist isomorphisms

$$HC_q^{(m)} \cong \begin{cases} H_{\text{ev}}^{\text{DR}}(Y^c) & q \text{ even} \\ H_{\text{odd}}^{\text{DR}}(Y^c) & q \text{ odd} \end{cases}$$

compatible with the canonical maps $HC_{q'}^{(m')} \to HC_q^{(m)}$ for $m' \leq m$.

In particular, the systems $\{HC_{\bullet}^{(m)}\}_{m \in \mathbb{Z}, 0}$ satisfy for $q \geq 2n + 1$ the Mittag-Leffler condition. This gives us a corollary.

Corollary 1.19. There are, for $q \geq 2n + 1$, natural isomorphisms

$$HC_q \cong \lim_{m \to -\infty} HC_q^{(m)} \cong \begin{cases} H_{\text{ev}}^{\text{DR}}(Y^c) & q \text{ even} \\ H_{\text{odd}}^{\text{DR}}(Y^c) & q \text{ odd} \end{cases}$$

This corollary together with a theorem (1.17) imply the following theorem for cyclic homology of an algebra of symbols if $\dim H_{\text{DR}}^\bullet(Y^c) < \infty$.

Theorem 1.20. The canonical map

$$I : \HH_{\bullet}(CS(X)) \to HC_{\bullet}(CS(X))$$

is injective. In particular

$$HC_{qr}(CS(X)) = \text{gr}^S HC_q(CS(X)) := S_{qr}/S_{q,r-1}, \quad S_{qr} = \ker S_{1+r}^1 \cap HC_q(CS(X))$$

is canonically isomorphic with

$$H_{\text{DR}}^{2n-q+2r}(Y^c), \quad r = 0, 1, \ldots.$$
With some more work we can prove the theorem without assumption of finite dimension of \(H^{\text{dr}}(Y_c) \). Then one represents \(X \) as a union \(\bigcup_{j \in \mathbb{N}} X_j \) where each \(X_j \) is compact (with smooth or empty boundary) and \(X_j \subset \text{Int} X_{j+1} \). Then the restriction maps \(\text{CS}(X) \rightarrow \text{CS}(X_j) \) induce homomorphisms

\[
\theta: H^*_H(\text{CS}(X)) \rightarrow \hat{H}^*_H := \lim_j H^*_H(\text{CS}(X)), \tag{1.7}
\]

\[
\eta: H^*_C(\text{CS}(X)) \rightarrow \hat{H}^*_C := \lim_j H^*_C(\text{CS}(X)). \tag{1.8}
\]

For each \(q \) there is a commutative diagram

\[
\begin{array}{ccc}
\text{HH}_q(\text{CS}(X)) & \xrightarrow{\theta_q} & \hat{\text{HH}}_q \\
\downarrow \cong & & \downarrow \cong \\
\text{H}^{2n-q}_{\text{dr}} & \rightarrow & \lim_j \text{H}^{2n-q}_{\text{dr}}(Y_c^j)
\end{array}
\]

Notice that also the lower arrow is an isomorphism, since

\[
\Omega^*_j = \lim_j \Omega^*_j,
\]

where \(\Omega_j \) denotes the corresponding graded algebra of functions on \(Y_c^j \). Since both projective systems \(\{\Omega^*_j\} \) and \(\{H^*_C(Y_c^j)\} \) satisfy Mittag-Leffler condition, we have that \(\theta \) in (1.7) is an isomorphism.

The naturality of the Connes exact sequence gives us the commutative diagram

\[
\begin{array}{ccccccc}
\cdots & \rightarrow & \hat{\text{HH}}_q & \rightarrow & \hat{\text{HC}}_q & \rightarrow & G \text{HC}_q-2 & \rightarrow & \hat{\text{HH}}_{q-1} & \rightarrow & \cdots \\
& \theta_q \downarrow \cong & & & & \eta_q \downarrow \cong & & \theta_{q-1} \downarrow \cong & & \cdots \\
\cdots & \rightarrow & B \text{HH}_q & \rightarrow & B \text{HC}_q & \rightarrow & G \text{HC}_q-2 & \rightarrow & B \text{HH}_{q-1} & \rightarrow & \cdots
\end{array}
\]

with a priori only the lower sequence being exact. The exactness of the upper sequence follows from

\[
\begin{array}{c}
\lim \text{HH}_q(\text{CS}(X_j)) = 0, \text{ for all } q \in \mathbb{N},
\end{array}
\]

which is a consequence of the finite-dimensionality of the groups \(\text{HH}_q(\text{CS}(X_j)) = H^{\text{dr}}_*(Y_c^j) \). Thus the "five lemma" and an easy inductive argument prove that \(\eta \) is an isomorphism and \(B = 0 \).

Now it remains to prove the proposition (1.18). The filtration \(\{F^{(m)}_j \mid p = m, m+1, \ldots\} \) on \(E^{(m)}_* \) induces a filtration on \(\text{Tot} E^{(m)}_* \). Denote by \(E^{(m),r}_{pq} \) the associated spectral sequence which converges to \(\text{HC}^{(m)}_* \).

This spectral sequence is a priori located in the region \(\{(p, q) \mid p \geq m, p + q \geq 0\} \). We
shall see that $E^{(m),r}_{pq}$ for $r \geq 1$ vanishes in fact outside the region shown below

i.e. $E^{(m),r}_{pq} = 0$ also if $p + q \geq 2n$ and $p \neq 0$.

Indeed, $E^{(m),1}_{pq}$ is equal, for $p \geq m$, to

$$H_{p+q}(\text{Tot } B_\bullet(\mathcal{O})(p)) = HC_{p+q}(\mathcal{O})(p).$$

Actually, the first spectral sequence of the double complex $B_\bullet(\mathcal{O})(p)$ degenerates at E^2 yielding thus that

$$E^{(m),1}_{pq} \simeq \Omega^{p+q}_\mathcal{O}(p)/d\Omega^{p+q-1}_\mathcal{O}(p), \quad p \geq m, \ p \neq 0,$$

and

$$E^{(m),1}_{0q} \simeq H^{\bar{q}}_{\text{dR}}(Y^c), \quad q \geq 2n,$$

where \bar{q} is the parity of q and $H^{\bullet}_{\text{dR}} = H^{(0)}_{\text{dR}}(Y^c) \oplus H^{(1)}_{\text{dR}}(Y^c)$. This implies the required location of non-vanishing $E^{(m),r}_{pq}$ and as a corollary gives

$$HC_{q}^{(m)} \simeq E^{(m),1}_{0q} \simeq H^{\bar{q}}_{\text{dR}}(Y^c)$$

for $q \geq 2n + 1$. The isomorphisms are also compatible with the canonical mappings $HC_{q}^{(m')} \rightarrow HC_{q}^{(m)}$.

24
1.9.1 Further analysis of spectral sequence

We will use the notation $E^{(m),r}_{pq}$ for the earlier spectral sequence converging to Hochschild homology $HH^{(m)}$.

First, let us consider the morphism of spectral sequences induced by S

$$S^{(m),r}_{pq} : E^{(m),r}_{pq} \rightarrow E^{(m),r}_{p,q-2}$$

For $r=1$ we have

$$E^{(m),1}_{pq} = \begin{cases} HC_{p+q}(O)(p), & O = \text{gr}(CS(X)) = \bigoplus_{p \in \mathbb{Z}} O(p) \\ 0 & p \geq m \\ 0 & p < m \end{cases}$$

Then

$$E^{(m),1}_{pq} : S^{(m),1}_{pq} \rightarrow E^{(m),1}_{p,q-2}$$

is the corresponding component of the S-map on cyclic homology of graded algebra O.

If $p = 0$

$$HC_{p+q}(O) = \Omega^q \oplus H_{dR}^{q-2} \oplus H_{dR}^{q-4} \oplus \ldots,$$

where

$$\Omega^\bullet := \Omega^\bullet _O, \quad H_{dR}^\bullet := H^\bullet (\Omega^\bullet).$$

$$\overline{\Omega}^k(p) := \Omega^k(p)/d\Omega^{k-1}(p)$$

For $p \neq 0$

$$HC_{p+q}(O)(p) = \begin{cases} \overline{\Omega}^{p+q}(p) & p \geq m \\ 0 & p < m \end{cases}$$

$p = -2$ $p = -1$ $p = 0$ $p = 1$ $p = 2$

$$\begin{array}{ccc}
\overline{\Omega}^{-1}_q(-2) & \xrightarrow{d} & \overline{\Omega}^{-1}_q(-1) \\
0 & \xrightarrow{d} & 0 \\
\overline{\Omega}^{-1}_q(-3) & \xrightarrow{d} & \overline{\Omega}^{-1}_q(-2) \oplus H_{dR}^{q-4} \oplus \ldots & \xrightarrow{d} & \overline{\Omega}^{1+1}_q(1) & \xrightarrow{d} & \overline{\Omega}^{q+2}_q(2) \\
\end{array}$$

where for $p = 0$ we have

$$\begin{array}{ccc}
\overline{\Omega}^q & \oplus & H_{dR}^{q-2} \oplus H_{dR}^{q-4} \oplus \ldots \\
0 & \oplus & \overline{\Omega}^{q-2} \oplus H_{dR}^{q-4} \oplus \ldots
\end{array}$$
Denote
\[E^{(m),1}_{pq} := \begin{cases} \Omega^{p+q}(\mathcal{O}) & p \geq 0 \\ 0 & p < 0 \end{cases} \]

Corollary 1.21. There is an isomorphism of chain complexes
\[(E^{(m),1}_{\bullet,q}, d_{\bullet,q}) \simeq (E^{(m),1}_{\bullet,q} \oplus (H^{q-2}_{dR} \oplus H^{q-4}_{dR} \oplus \ldots)[0], d) \]
and there is an exact sequence of complexes
\[
\begin{array}{cccccccc}
0 & \to & H^{q-1}_{dR} & \to & (E^{(m),1}_{\bullet,q}) & \to & (E^{(m),1}_{\bullet,q}, d^1) & \to & 0 \\
& & \downarrow & & \downarrow s & & \downarrow & & \\
& & H^{q-1}_{dR} & \to & (E^{(m),1}_{\bullet,q}, d^1) & \to & (E^{(m),1}_{\bullet,q}, d^1) & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & 0 & & 0 & & 0 & & \\
\end{array}
\]

Consider the second spectral sequence of the double complex but arranged according to conventions of Cartan-Eilenberg’s book. Denote it by \(qE^{*}_{\bullet,\bullet} \), although it depends also on \(m \). The \(qE^{*}_{\bullet,\bullet} \) looks as follows.

There is an isomorphism
\[E^{(m),2}_{pq} \simeq E^{(m),2}_{p+1,q+1} \]
except \((p, q) = (0, q), (1, q - 1), (1, q), (2, q)\).

The term \(E^{(m),2}_{pq} \) appears twice, in \(qE^{*}_{\bullet,\bullet} \) and \(q+1E^{*}_{\bullet,\bullet} \).

There are two cases:

\(q < n \) then for \(l = \left[\frac{q}{2} \right] + 1 \)
\[E^{(m),2}_{0} \cong E^{(m),2}_{-1,q-1} \cong E^{(m),2}_{-2,q-2} \cong \ldots \cong E^{(m),2}_{-l,q-1} \cong H_{C_{q-2l}(\mathcal{O})}(l) = 0 \]
because \(q - 2l < 0 \).
The \mathcal{E}^1-term is the same as the \mathcal{E}^2-term:

$$
\begin{array}{ccccccc}
E_{0,q-1}^{(m),2} & = 0 & E_{1,q-1}^{(m),2} & = 0 & E_{2,q-1}^{(m),2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & E_{1,q}^{(m),2} & E_{2,q}^{(m),2} & \end{array}
$$

In \mathcal{E}^3 there are only two terms and the spectral sequence collapses at \mathcal{E}^4.

$$
\begin{array}{ccccccc}
E_{2,q-1}^{(m),2} & \simeq & E_{3,q}^{(m),2} & \simeq & E_{4,q+1}^{(m),2} & \simeq & \cdots & \simeq & E_{2+l,q+l-1}^{(m),2} & \simeq & \Omega^{2l+q-1}(2+l) = 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$q - 1 \geq n$ then for $l = n - \left[\frac{q}{2}\right]$

because $2l + q - 1 > 2n$.

$$
\begin{array}{ccccccc}
E_{0,n-1}^{(m),2} & \simeq & E_{2,n-1}^{(m),2} & \simeq & E_{3,n-1}^{(m),2} \\
E_{n+3}^{\text{dR}} & H_{dR}^{n+2} & H_{dR}^{n+1} & H_{dR}^n & H_{dR}^{n-1} & H_{dR}^{n-2} & H_{dR}^{n-3} \\
0 & E_{-2,n}^{(m),2} & E_{-1,n}^{(m),2} & 0 & 0 & 0 & 0
\end{array}
$$
\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & H^{2n} & 0 & 0 & 0 \\
0 & 0 & H^{2n} & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
n + 2 & 0 & 0 & 0 & 0 & H^{2n} \\
n + 1 & 0 & 0 & H^{2n} & 0 & 0 \\
n & 0 & H^{2n} & H^{2n-1} & 0 & 0 \\
n - 1 & 0 & 0 & 0 & 0 & 0 \\
n - 2 & 0 & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
- n & 0 & 0 & 0 & 0 & 0 \\
- n - 1 & 0 & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
n - 1 & 0 & 0 & 0 & 0 & 0 \\
n & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
1.9.2 Higher differentials

For \(r = 1, 2, \ldots \) the differentials in the spectral sequence are as follows

\[\sum_{(p,q) \in R} \dim E^r_{pq} \geq \sum_{(p,q) \in R} \dim E^{r+1}_{pq} \geq \cdots \geq \sum_{(p,q) \in R} \dim E^\infty_{pq}. \]

The equality holds if and only if there is no nontrivial differential originating or leaving \(R \), that is the equality

\[\sum_{(p,q) \in R} \dim E^r_{pq} = \sum_{(p,q) \in R} \dim E^\infty_{pq} \]

is another way of saying that the spectral sequence in region \(R \) degenerates at \(E^r \).

In our spectral sequence

\[E^{(m),2}_{pq} \Rightarrow H_{p+q}(\text{Tot} B_{\bullet \bullet}(\text{CS}(X))/F_{m-1} \text{Tot} B_{\bullet \bullet}(\text{CS}(X))) \]

We claim that the only nonvanishing differentials \(d^r_{pq} \) for \(r \geq 2 \) are

\[d^r_{pq} : E^{(m),p}_{pq} \to E^{(m),2}_{0,p+q-1} \]

which inject \(E^{(m),2}_{pq} = E^{(m),2}_{pq} \simeq H_{dR}^{p-2} \) into \(E^{(m),p}_{0,p+q-1} \).

We can define two regions \(R, R' \) as follows.

Then

\[\sum_{(p,q) \in R} \dim E^r_{pq} = \sum_{(p,q) \in R} \dim E^\infty_{pq}. \]

Suppose that there is no nontrivial differential originating from \(R' \) or nontrivial differential hitting \(R \) and originating outside. Then

\[\sum_{(p,q) \in R'} \dim E^r_{pq} - \sum_{(p,q) \in R} \dim E^r_{pq} \geq \sum_{(p,q) \in R'} \dim E^{r+1}_{pq} - \sum_{(p,q) \in R} \dim E^{r+1}_{pq} \]
Equality holds if and only if all \(d^r \) inside \(R \) are zero, and then for all \(r > r_0 \) for some \(r_0 \)

\[
\sum_{(p,q) \in R} \dim E^r_{pq} - \sum_{(p,q) \in R'} \dim E^r_{pq} = \sum_{(p,q) \in R} \dim E^r_{pq} - \sum_{(p,q) \in R'} \dim E^\infty_{pq}.
\]

We can write

\[
\sum_{0 \leq q < n} \dim E^{(m),2}_{0q} - \sum_{0 \leq q < n} \dim E^{(m),\infty}_{0q} = \sum_{p > 0} \dim E^{(m),2}_{pq}.
\]

For \(r \geq 2 \) let us introduce the following statements:

(A) \(r \) The natural maps

\[
E^{(m),r}_{pq} \to E^{(m),r}_{pq} \langle Y^{n-1} \rangle
\]

are isomorphisms for \(p > 0, r \) fixed.

(B) \(r \) The differentials

\[
d^r_{pq} : E^{(m),r}_{pq} \to E^{(m),r}_{0,q+r-1}
\]

are injective.

(C) \(r \) The differentials

\[
d^r_{pq} : E^{(m),r}_{pq} \to E^{(m),r}_{p-r,q+r-1}
\]

are zero for \(p \geq r \).

We prove them by induction on \(r \), simultaneously

\[
(B)_2 \quad (A)_2 \quad (B)_3 \quad (B)_2 \land (C)_2 \implies (A)_3
\]

and so on. Furthermore let us introduce two more sequences of statements:

(D) \(r \) For \(p > m \)

\[
d^r_{pq} = \lim \limits_{j \to \infty} d^r_{pq,j}.
\]

(E) \(r \) For \(p > m \)

\[
E^{(m),r}_{pq} = \lim \limits_{j \to \infty} E^{(m),r}_{pq} \langle Y^j \rangle.
\]

These are also proved by induction on \(r \) in the following way. The \((E)_r \) implies \((D)_r \) and \((E)_r \) and \((D)_r \) together with the condition that \(\{ E^{(m),r}_{pq} \langle Y^j \rangle \}, \{ E^{(m),r+1}_{pq} \langle Y^j \rangle \} \) satisfy Mittag-Leffler condition, imply \((E)_{r+1} \).

The \((A)_2\) statement follows from the following remark. Suppose \(H^k_{dR}(Y^c) = 0 \) for \(k > n \) and that \(\dim H^r_{dR}(Y^c) < \infty \). Then

\[
\sum_{j=0}^{2n-2} \dim E^{(m),2}_{0j} - \sum_{p > 0,q} \dim E^{(m),2}_{pq} = \sum_{j=0}^{2n-2} \dim HC_j(CS_Y).
\]

The maps

\[
H^j_{dR}(Y^c) \to H^j_{dR}(\langle Y^k \rangle^c)
\]

are isomorphisms for \(j < k \), monomorphism for \(j = k \), zero for \(j > k + 1 \).
Appendix A

Topological tensor products

Let \((E, \{p_\alpha\}_{\alpha \in A}), (F, \{q_\beta\}_{\beta \in B})\) be vector spaces with the systems of seminorms \(\{p_\alpha\}_{\alpha \in A}, \{q_\beta\}_{\beta \in B}\) respectively. Define a system of seminorms on \(E \otimes F\) by

\[
(p_\alpha \otimes q_\beta)(\tau) := \inf_{i \in I} \sum_{i} p_\alpha(e_i)q_\beta(f_i),
\]

where infimum is taken over all representations \(\tau = \sum_{i} e_i \otimes f_i\) in which \(I\) is a finite set.

Definition A.1. A locally convex space \(E \otimes F\) with topology induced by the system of seminorms \(\{p_\alpha \otimes q_\beta\}_{(\alpha, \beta) \in A \times B}\) is called a projective tensor product and denoted by \(E \otimes_\pi F\). Its completion is denoted by \(E \hat{\otimes} \pi F\).

A bilinear map

\[\phi: E \times F \to E \hat{\otimes} \pi F, \quad (e, f) \mapsto e \otimes f,\]

is continuous in both variables and has the following universal property.

Fact A.2. For every bilinear jointly continuous mapping \(f: E \times F \to W\) into locally convex space \(W\) there exists unique continuous linear map \(L_\phi: E \hat{\otimes} \pi F \to W\) such that following diagram commutes.

\[
\begin{array}{ccc}
E \times F & \xrightarrow{f} & W \\
\downarrow \phi & & \downarrow \phi \\
E \hat{\otimes} \pi F & \xrightarrow{L_\phi} & W
\end{array}
\]

Remark A.3. There are also different tensor products on topological vector spaces, like injective and inductive tensor products, but we will not describe them here.

Suppose that \(E' = \bigcup_{m \in \mathbb{Z}} E'_m\), where

\[
\ldots \subseteq E'_{m-1} \subseteq E'_m \subseteq \ldots
\]

is a \(\mathbb{Z}\)-filtration of \(E'\) by locally convex closed vector subspaces of \(E'\), and analogously for the space \(E''\). Then define

\[
E' \hat{\otimes} E'' := \lim_{(l_1, l_2) \in \mathbb{Z} \times \mathbb{Z}} E'_l \hat{\otimes}_\pi E''_{l_2}.
\]

If for any \(m\) there is a continuous projections \(E'_m \to E'_{m-1}, E''_m \to E''_{m-1}\), then the space \(E'_l \hat{\otimes}_\pi E''_{l_2}\) is a closed subspace in \(E'_m \hat{\otimes}_\pi E''_{m_2}\) for any \(m_1 \geq l_1, m_2 \geq l_2\).
Define a \(\mathbb{Z} \)-filtration on \(E' \hat{\otimes} E'' \)

\[
(E' \hat{\otimes} E'')_m := \bigcup_{(l_1,l_2) \in \mathbb{Z} \times \mathbb{Z}} E'_{l_1} \hat{\otimes} \pi E''_{l_2}.
\]

In similar way we define \(E^{(1)} \hat{\otimes} \ldots \hat{\otimes} E^{(p)} \) with \(\mathbb{Z} \)-filtration

\[
(E^{(1)} \hat{\otimes} \ldots \hat{\otimes} E^{(p)})_m := \bigcup_{(l_1, \ldots, l_p) \in \mathbb{Z}^p} E^{(1)}_{l_1} \hat{\otimes} \ldots \hat{\otimes} \pi E^{(p)}_{l_p}.
\]
Appendix B

Spectral sequences

B.1 Spectral sequence of a filtered complex

Let (C_*, F, ∂) be a filtered chain complex, that is

$$\ldots \subseteq F_p C_* \subseteq F_{p+1} C_* \subseteq \ldots \subseteq C_*.$$

We say that the filtration is

1. **separable** if $\cap_p F_p C_n = \{0\}$,
2. **complete** if $C_n \cong \lim_p C_n / F_p C_n$,
3. **cocomplete** if $\cup_p F_p C_n \cong C_n$,

for all $n \in \mathbb{Z}$.

We define $E^{0*} := \text{gr}^F C_*$ (the associated graded complex), where $E^{0*} := F_p C_{p+q} / F_{p-1} C_{p+q}$, and d^{0*} is the boundary operator induced by ∂, $d^{0*} : E^{0*}_p \to E^{0*}_{p-1}$. Thus (E^{0*}, d^{0*}) is the direct sum of complexes

$$(E^{0*}, d^{0*}) = \bigoplus_{p \in \mathbb{Z}} (E^0_{p*}, d^0_{p*}).$$

Next we define

$$E^1_{pq} := H_q(F^0_{p*}, d^0_{p*}) = \frac{\{c \in F_p C_{p+q} \mid \partial c \in F_{p-1} C_{p+q-1}\}}{\{c \in F_p C_{p+q} \mid c = \partial b \text{ for some } b \in F_p C_{p+q+1}\}} \pmod{F_{p-1} C_{p+q}}.$$

On E^1_{pq} the boundary operator ∂ induces a boundary operator $d^1_{pq} : E^1_{pq} \to E^1_{p-1,q}$ and so on...
Define for \(r = 1, 2, \ldots \)

\[
E_{pq}^r = \frac{\{ c \in F_p C_{p+q} \mid \partial c \in F_{p-r} C_{p+q-1} \}}{\{ c \in F_p C_{p+q} \mid c = \partial b \, \text{for some} \, b \in F_{p+r-1} C_{p+q+1} \}} \mod F_{p-1} C_{p+q} \\
= Z_{pq}^r + F_{p-1} C_{p+q} \\
\Rightarrow B_{pq}^r + F_{p-1} C_{p+q}.
\]

\[
\cdots \quad F_{p-r} C_{p+q-1} \quad F_{p-r} C_{p+q} \quad F_{p-r} C_{p+q+1} \quad \cdots
\]

\[
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots
\]

\[
\cdots \quad F_{p-1} C_{p+q-1} \quad F_{p-1} C_{p+q} \quad F_{p-1} C_{p+q+1} \quad \cdots
\]

\[
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots
\]

\[
\cdots \quad F_p C_{p+q-1} \quad \partial^0 \quad F_p C_{p+q} \quad \partial^0 \quad F_p C_{p+q+1} \quad \cdots
\]

\[
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots
\]

\[
\cdots \quad F_{p+1} C_{p+q-1} \quad \partial^0 \quad F_{p+1} C_{p+q} \quad \partial^0 \quad F_{p+1} C_{p+q+1} \quad \cdots
\]

\[
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots
\]

\[
\cdots \quad F_{p+r} C_{p+q-1} \quad \partial^0 \quad F_{p+r} C_{p+q} \quad \partial^0 \quad F_{p+r} C_{p+q+1} \quad \cdots
\]

\[
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots
\]

\[
\cdots \quad C_{p+q-1} \quad \partial \quad C_{p+q} \quad \partial \quad C_{p+q+1} \quad \cdots
\]

Now \(E_{pq}^{r+1} \) equipped with the boundary operator induced by \(\partial \) becomes a direct sum of complexes

\[
\cdots \leftarrow E_{p-r,q+r-1}^r \xleftarrow{d_{pq}^r} E_{p+q}^r \xrightarrow{d_{p+r,q-r+1}^r} E_{p-r,q-r+1}^r \rightarrow \cdots,
\]

which we can denote by \((E_{pq}^{r+1}, d_{pq}^r)\). Now \(E_{pq}^{r+1} \) is canonically isomorphic to the homology of the complex \((E_{p+r,q+1}^{r+1}, d_{pq}^r)\) at the \(E_{pq}^r \).
For each \((p, q)\) we defined a system of subobjects of \(F_pC_{p+q}\):
\[
\{0\} = B^0_{pq} \subseteq B^1_{pq} \subseteq \ldots \subseteq B^r_{pq} \subseteq \ldots \\
\subseteq \bigcup_r B^r_{pq} =: B^\infty_{pq} \subseteq Z^\infty_{pq} := \bigcap_r Z^r_{pq} \subseteq \\
\ldots \subseteq Z^1_{pq} \subseteq \ldots \subseteq Z^0_{pq} = F_pC_{p+q},
\]
such that
\[
E^r_{pq} = Z^r_{pq} / B^r_{pq} \mod F_{p-1}C_{p+q}.
\]

Morphism \(\varphi: (C_\bullet, F, \partial) \to (\check{C}_\bullet, F', \partial')\) of filtered complexes induces a morphism
\[
E_{pq}^r(\varphi): E^r_{pq} \to E^r_{pq}, r \geq 0,
\]
of corresponding spectral sequences.

Theorem B.1 (Eilenberg-Moore). If \(E_{pq}^r(\varphi)\) is an isomorphism for some \(r\) and both filtrations are complete and cocomplete, then \(\varphi\) is a quasi-isomorphism.

We say that the spectral sequence \(E^\bullet_{pq}\) **converges** to filtered module \(M\) if
\[
E^\infty_{pq} \simeq F_pM_{p+q} / F_{p-1}M_{p+q}, \quad p, q \in \mathbb{Z}.
\]

We write then \(E^r_{pq} \Rightarrow M_{p+q}\).

If the filtration is locally bounded from below (i.e. \(F_pC_n = \{0\}\) for \(p \ll 0\)) and cocomplete, then \(E^\bullet_{pq}\) converges to \(H_*(C_\bullet, \partial)\). The homology of a complex \((C_\bullet, \partial)\) is equipped with canonical filtration
\[
F_pH_*(C_\bullet, \partial) := \text{im}(H_*(F_pC_\bullet, \partial) \to H_*(C_\bullet, \partial)).
\]

We say that the spectral sequence \(E^\bullet_{pq}\) **degenerates** (or **collapses**) at \(E^q\) if \(E^\infty_{pq} \simeq E^\infty_{pq}\).

Consider the \(r\)-th term \(E_r\) of the spectral sequence.

\[
\begin{array}{c}
\bullet \\
\downarrow \\
p \\
\bullet \\
\downarrow \\
q
\end{array}
\]

The source term \(E^r_{pq}\) is mapped to the rightmost one \(E^r_{p'q'}\). There is a sequence of maps
\[
E^r_{pq} \to E^r_{pq} \to \ldots \to E^\infty_{pq} \to H_{p+q}(C),
\]
and similarly
\[
H_{p+q}(C) \to E^\infty_{pq} \to \ldots \to E^r_{p'q'} \to E^r_{p'q'}.
\]

These maps are called the **edge homomorphisms**. For the first quadrant spectral sequence they correspond to maps from leftmost column \(p = 0\)
\[
E^r_{0q} \to H_q(C),
\]
and to bottom row \(q = 0\)
\[
H_p(C) \to E^r_{p0}.
\]
B.2 Examples

Example B.2. Two spectral sequences associated with the double complex \((C_{\bullet \bullet}, \partial', \partial'')\).

\[
\begin{array}{cccccc}
\cdots & \cdots & \cdots & & \cdots \\
\downarrow & & & & \downarrow \\
\cdots & C_{p-1,q+1} & \xleftarrow{\partial'} & C_{p,q+1} & \xleftarrow{\partial'} & C_{p+1,q+1} & \cdots \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
\cdots & C_{p-1,q} & \xleftarrow{\partial'} & C_{p,q} & \xleftarrow{\partial'} & C_{p+1,q} & \cdots \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
\cdots & C_{p-1,q-1} & \xleftarrow{\partial'} & C_{p,q-1} & \xleftarrow{\partial'} & C_{p+1,q-1} & \cdots \\
& \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

Recall that
\[
\partial'^2 = \partial''^2 = 0, \quad [\partial', \partial''] = \partial' \partial'' + \partial'' \partial' = 0,
\]
and the total complex is defined by

\[
(Tot \, C)_n := \prod_{p=\infty}^{1} C_{p,n-p} \oplus \bigoplus C_{p,n-p}, \quad \partial := \partial' + \partial''.
\]

There are two filtrations on Tot C:

1. filtration by columns

\[
'F_p (Tot \, C)_n := \prod_{r \leq p} C_{r,n-r}
\]
2. Filtration by rows

\[F_p(\text{Tot } C)_n := \bigoplus_{p \leq s} C_{n-s,s} \]

Filtration by rows is complete and cocomplete only if for all \(n \in \mathbb{Z} \) \(C_{pq} \neq 0 \) for only finite number of \(p, q \) such that \(p + q = n \). Filtration by columns is always complete and cocomplete.

There are two spectral sequences associated to double complex \((C_{\bullet, \bullet}, \partial', \partial'')\).

1. First spectral sequence associated to the filtration by columns

\[\E^1_{pq} = H_q(C_{p, \bullet}, \partial''). \]

It converges to \(H_{p+q}(C_{\bullet, \bullet}) := H_{p+q}(\text{Tot}(C_{\bullet, \bullet})) \) if \(C_{p,n-p} = 0 \) for \(p \ll 0 \) \((n \in \mathbb{Z})\).

2. Second spectral sequence associated to the filtration by rows

\[\E^1_{pq} = H_q(C_{\bullet, p}, \partial'). \]

It converges to \(H_{p+q}(C_{\bullet, \bullet}) \) if \(C_{p,n-p} = 0 \) for \(p \ll 0 \) and \(p \gg 0 \) \((n \in \mathbb{Z})\).

Example B.3. Double complex \(B(A)_{\bullet, \bullet} \) (Connes double complex). Let \(A \) be the associative algebra with unit.

\[B(A)_{pq} := \begin{cases} A^\otimes (q-p+1) & \text{if } q \geq p \geq 0, \\ 0 & \text{otherwise.} \end{cases} \]
Here \(b \) is the Hochschild boundary operator and \(B \) is defined as

\[
B := (1 - t)sN,
\]

where

\[
\begin{align*}
 s(a_0 \otimes \cdots \otimes a_n) &:= 1 \otimes a_0 \otimes \cdots \otimes a_n, \\
 t(a_0 \otimes \cdots \otimes a_n) &:= (-1)^n \otimes a_0 \otimes \cdots \otimes a_{n-1}, \\
 N(a_0 \otimes \cdots \otimes a_n) &:= (id + t + \ldots + t^n)(a_0 \otimes \cdots \otimes a_n).
\end{align*}
\]

Example B.4. Double complex \(D(A)_{\bullet\bullet} \). Here \(A \) is commutative \(k \)-algebra with unit.

\[
D(A)_{pq} := \begin{cases}
 \Omega^{q-p}_{A/k} & \text{if } q \geq p \geq 0, \\
 0 & \text{otherwise.}
\end{cases}
\]

If \(A \cong A \otimes \mathbb{Z} \mathbb{Q} \) (i.e. the additive group \((A,+)\) is uniquely divisible), then the formula

\[
\mu(a_0 \otimes \cdots \otimes a_n) := \frac{1}{n!} a_0^{} da_0 \wedge \cdots \wedge da_n
\]

induces a morphism of double complexes \(\mu : B(A)_{\bullet\bullet} \to D(A)_{\bullet\bullet} \).

On the level of spectral sequences associated with the filtration by columns we obtain surjective maps

\[
E^1(pq)(\mu) : A^{\otimes (q-p+1)} \to \Omega^{q-p}_{A/k}.
\]

These maps are isomorphisms if \(A \) is a function algebra on the smooth algebraic variety over a perfect field (i.e. of characteristic 0 or such that \(k^p = k \) if \(\text{char}(k) = p \)), or inductive limit of such (for example \(A = \mathbb{C} \) as \(\mathbb{Q} \)-algebra).
The first spectral sequence of a double complex \((D(A)_{\bullet\bullet}, 0, d) = \bigoplus_{q \geq 0} (\Omega^q_{A/k} \xrightarrow{d} \cdots \xrightarrow{d} A)\) degenerates at the term \(E^2\):

\[
\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\Omega^2_{A/k}/d\Omega^1_{A/k} & \xrightarrow{d} & H^1_{dR}(A) & \xrightarrow{d} H^0_{dR}(A) \\
0 & & 0 & \\
\Omega^1_{A/k}/dA & \xrightarrow{d} & H^0_{dR}(A) & \\
0 & & A & \\
\end{array}
\]

Thus the first spectral sequence of the double complex \((B(A)_{\bullet\bullet}, b, B)\) also degenerates at the term \(E^2\), and we get an isomorphism

\[\text{HC}_n(A) := \text{H}_n(B(A)_{\bullet\bullet}) = \Omega^n_{A/k}/d\Omega^{n-1}_{A/k} \oplus H^1_{dR}(A) \oplus H^0_{dR}(A) \oplus \ldots.\]

Example B.5. Let \(P_{\bullet}\) be a projective resolution of a right \(R\)-module \(M\), and \(Q_{\bullet}\) a projective resolution of a left \(R\)-module \(N\). Consider the double complex \(P_{\bullet} \otimes_R Q_{\bullet}\). Then

\[
\begin{align*}
\ell E^2_{pq} &= \begin{cases}
H_p(P_{\bullet} \otimes_R N) & q = 0, \\
0 & q \neq 0
\end{cases} \\

\ell' E^2_{pq} &= \begin{cases}
H_p(M \otimes_R Q_{\bullet}) & q = 0, \\
0 & q \neq 0
\end{cases}
\end{align*}
\]

Both spectral sequences converge to \(H_{p+q}(P_{\bullet} \otimes_R Q_{\bullet}) =: \text{Tor}^R_{p+q}(M, N)\), so we get an important canonical isomorphisms

\[H_p(P_{\bullet} \otimes_R N) \simeq \text{Tor}^R_{p}(M, N) \simeq H_p(M \otimes_R Q_{\bullet}).\]

They express the fact that the bifunctor \(\otimes_R : \textbf{Mod} - R \times R - \textbf{Mod} \rightarrow \textbf{Ab}\) is balanced.

Example B.6. Two hiperhomology spectral sequences. A Cartan-Eilenberg resolution of a complex \((C_{\bullet}, \partial)\) is a double complex \((P_{\bullet\bullet}, \partial', \partial'')\) with augmentation \(\eta : P_{\bullet0} \rightarrow C_{\bullet}\) satisfying the following conditions:

1. for all \(p, q\) the modules \(P_{pq}, \text{im} \partial'_{pq}, \text{ker} \partial'_{pq}, H_p(P_{\bullet q}, \partial')\) are projective,

2. the augmented complexes

\[
\begin{array}{cccc}
P_{\bullet\bullet} & \text{im} \partial'_{\bullet\bullet} & \text{ker} \partial'_{\bullet\bullet} & H_p(P_{\bullet q}, \partial') \\
\eta & \eta & \eta & \eta \\
C_{\bullet} & \text{im} \partial_{\bullet} & \text{ker} \partial_{\bullet} & H_p(C_{\bullet}, \partial) \\
\end{array}
\]

40
are projective resolutions.

\[
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots \\
\cdots \quad P_{p-1,q} \quad \xi_p' \quad P_{p,q} \quad \xi_{p+1} \quad P_{p+1,q} \quad \cdots \\
\quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\cdots \quad P_{p-1,q-1} \quad \xi_p' \quad P_{p,q-1} \quad \xi_{p+1} \quad P_{p+1,q-1} \quad \cdots \\
\cdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \cdots \\
\cdots \quad P_{p-1,1} \quad \xi_p' \quad P_{p,1} \quad \xi_{p+1} \quad P_{p+1,1} \quad \cdots \\
\quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\cdots \quad P_{p-1,0} \quad \xi_p' \quad P_{p,0} \quad \xi_{p+1} \quad P_{p+1,0} \quad \cdots \\
\quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\cdots \quad C_{p-1} \quad \xi_p \quad C_p \quad \xi_{p+1} \quad C_{p+1} \quad \cdots
\]

Such resolution can be obtained from the arbitrary projective resolutions of \(H_p(C_\bullet, \partial) \) and \(\text{im} \partial_{p-1} \) by gluing them.

\[
\begin{array}{c}
p_H^{pj} \leftarrow \cdots \leftarrow P_{p-1}^{pj} \leftarrow P_{p}^{pj} \leftarrow P_{p+1}^{pj} \leftarrow \cdots \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
H_p(C_p, \partial) \leftarrow \ker \partial_p \leftarrow \text{im} \partial_{p-1} \leftarrow \text{im} \partial_p \leftarrow C_p \leftarrow \ker \partial_p
\end{array}
\]

For an additive functor \(F \) the hiperhomology spectral sequences are the first and second spectral sequences of a double complex \((F(F_\bullet), F(\partial'), F(\partial''))\)

\[
\begin{aligned}
^1E^1_{pq} &= (L_q F)(C_p), \\
^1E^2_{pq} &= F(p_H^{pj}),
\end{aligned}
\]

and

\[
\begin{aligned}
^2E^1_{pq} &= H_p((L_q F)(C_\bullet)), \\
^2E^2_{pq} &= (L_p F)(H_q(C_\bullet)).
\end{aligned}
\]

Both spectral sequences converge to

\[
\mathbb{L}_{p+q} F(C_\bullet) := H_{p+q}(F(P_\bullet)).
\]

if \(C_\bullet \) is bounded from below, that is \(C_n = 0 \) for \(n \ll 0 \).

Assume that \(C_n = 0 \) for \(n < 0, C_\bullet \) is \(F \)-acyclic, that is \((L_q F)(C_n) \isomorph C_n, (L_p F)(C_n) = 0 \) for \(p > 0 \), and that

\[
H_n(C_\bullet) = \begin{cases}
M & n = 0, \\
0 & n > 0.
\end{cases}
\]
Such complex is called an F-acyclic resolution of the module M. In that case

\[
\begin{align*}
\hat{E}^2_{pq} &\sim \begin{cases}
H_p(F(C_*)) & q = 0, \\
0 & q \neq 0,
\end{cases} \\
\check{E}^2_{pq} &\sim \begin{cases}
L_pF(M) & p = 0, \\
0 & p \neq 0.
\end{cases}
\end{align*}
\]

Thus we obtain an isomorphism

\[H_p(F(C_*)) \cong (L_pF)(M).\]

We proved a very important fact, that to compute $(L_pF)(M)$ it is enough to use an arbitrary F-acyclic resolution of M.

Example B.7. Flat module is an F-acyclic module for $F = (-) \otimes_R N$, where N is an arbitrary left R-module. For $R = \mathbb{Z}$ flat modules are the torsion free abelian groups. Thus

\[0 \leftarrow \mathbb{Q}/\mathbb{Z} \leftarrow \mathbb{Q} \leftarrow \mathbb{Z} \leftarrow 0\]

is a flat resolution of the group \mathbb{Q}/\mathbb{Z} (injective cogenerator of a category of abelian groups \textbf{Ab}). From this we obtain

\[\text{Tor}_1^\mathbb{Z}(\mathbb{Q}/\mathbb{Z}, A) = \ker(A \to A \otimes \mathbb{Z} \mathbb{Q}) = \text{Torsion}(A).\]

Example B.8. Consider two composable additive functors

\[\mathcal{A} \xrightarrow{G} \mathcal{B} \xrightarrow{F} \mathcal{C},\]

where $\mathcal{A}, \mathcal{B}, \mathcal{C}$ are abelian categories. Let M be an object in \mathcal{A}, P_\bullet its projective resolution. In the hyperhomology spectral sequence we put $C_* = G(P_\bullet)$. Then if G sends projective objects into F-acyclic objects

\[
\begin{align*}
\hat{E}^2_{pq} &= \text{H}_p((L_qF)(G(P_\bullet))) \cong \begin{cases}
\text{H}_p((F \circ G)(P_\bullet)) = (L_p(F \circ G))(M) & q = 0, \\
0 & q \neq 0,
\end{cases} \\
\check{E}^2_{pq} &= (L_pF \circ L_qG)(M)
\end{align*}
\]

In this case we obtain that

\[\check{E}^2_{pq} = (L_pF \circ L_qG)(M) \Rightarrow (L_{p+q}(F \circ G))(M).\]

\[
\begin{array}{cccc}
\hat{E}^2_{pq} = E^\infty_{pq} = & \cdots & \cdots & \cdots \\
& 0 & 0 & \cdots & 0 \\
& 0 & 0 & \cdots & 0 \\
(L_0(F \circ G))(M) & (L_1(F \circ G))(M) & \cdots & (L_p(F \circ G))(M)
\end{array}
\]
This spectral sequence is called a spectral sequence of a composition of functors.

Example B.9. Let $\varphi: R \to S$ be a homomorphism of unital rings, M a right R-module, N a left S-module. Consider a composition

$\text{Mod} - R \xrightarrow{G= (-) \otimes_R S} \text{Mod} - S \xrightarrow{F= (-) \otimes_R N} \text{Ab}$

The spectral sequence of a composition of these two functors (G sends projective R-modules into projective S-modules) in looks as follows:

$E^2_{pq} = \text{Tor}_{p+q}^S(\text{Tor}_p^R(M, S), N) \Rightarrow \text{Tor}_q^R(M, N)$

and it is called a base change spectral sequence.

Suppose that $R \to S$ is a homomorphism of k-algebras, $M_R, S N$ are respectively right R-module and left S-module. Their tensor product $M \otimes_R N$ gives rise to a sequence of derived functors $\text{Tor}_p^R(M, N)$.

Suppose that $P_\bullet \to M$ is a projective R-module resolution of M, and $Q_\bullet \to N$ a projective S-module resolution for N.

$M \otimes_R N \leftarrow P_\bullet \otimes_R Q_\bullet \simeq (P_\bullet \otimes_R S) \otimes_S Q_\bullet$

Suppose $F(\cdot, \cdot)$ is a functor with both covariant arguments.

\[
\begin{align*}
\text{Eq}_{pq}^{2} = \cdots & \hspace{1cm} \cdots \\
(L_0 \circ L_q G)(M) & \hspace{1cm} (L_1 \circ L_q G)(M) & \hspace{1cm} \cdots & \hspace{1cm} (L_p \circ L_q G)(M) \\
(\cdots) & \hspace{1cm} (\cdots) & \hspace{1cm} \cdots & \hspace{1cm} (\cdots) \\
(L_0 \circ L_1 G)(M) & \hspace{1cm} (L_1 \circ L_1 G)(M) & \hspace{1cm} \cdots & \hspace{1cm} (L_p \circ L_1 G)(M) \\
(\cdots) & \hspace{1cm} (\cdots) & \hspace{1cm} \cdots & \hspace{1cm} (\cdots) \\
(L_0 \circ L_0 G)(M) & \hspace{1cm} (L_1 \circ L_0 G)(M) & \hspace{1cm} \cdots & \hspace{1cm} (L_p \circ L_0 G)(M)
\end{align*}
\]
We say that it is **left balanced** if there are isomorphisms $L^{\{1\}}_q \simeq L^{\{2\}}_q \simeq L^{\{2\}}_q$.

\[
\begin{align*}
R^q F(\cdot, \cdot) & \cong R^{q+2}_1 F(\cdot, \cdot) \\
R^{q+2}_1 F(\cdot, \cdot) & \cong R^q_{\{1,2\}} F(\cdot, \cdot) \\
R^q_{\{1\}} F(\cdot, \cdot) & \cong R^q_{\{2\}} F(\cdot, \cdot) \\
R^q_{\{2\}} F(\cdot, \cdot) & \cong R^q_{\{1\}} F(\cdot, \cdot)
\end{align*}
\]

We say that it is **right balanced** if there are isomorphisms $R^{q+2}_{\{1\}} \simeq R^{q+2}_{\{2\}} \simeq R^q_{\{2\}}$.

There is an isomorphism

\[
P \otimes_R N \cong P \otimes_R Q \cong (P \otimes_R S) \otimes_S Q
\]

Taking homology we get

\[
H_p(\text{Tor}_q^R(M, S \otimes_S Q)) \cong \text{Tor}_p^S(\text{Tor}_q^R(M, S), N),
\]

and a base change spectral sequence

\[
E^2_{pq} = \text{Tor}_p^S(\text{Tor}_q^R(M, S), N) \implies \text{Tor}_p^R(M, N).
\]

The boundary maps (transgressions) of this spectral sequences are as follows:

\[
E^2_{0n} = \text{Tor}_n^R(M, S) \otimes_S N \to \text{Tor}_n^R(M, N)
\]

\[
\text{Tor}_n^R(M, N) \to E^2_{0n} = \text{Tor}_n^S(M \otimes_S N)
\]

Example B.10. For an unital k-algebra A let $\text{Lie}(A)$ denote the associated Lie algebra with bracket $[a, a'] = aa' - a'a$. The universal derivation

\[
d_\Delta : A \to A \otimes_k A^{op}, \quad d_\Delta(a) = 1 \otimes a^{op} - a \otimes 1
\]

is a homomorphism of Lie algebras $\text{Lie}(A) \to \text{Lie}(A \otimes_k A^{op})$, so it induces a homomorphism of associative algebras $R := U(\text{Lie}(A)) \to A \otimes_k A^{op} := S$. Let $M = k$ (trivial representation of a Lie algebra $\text{Lie}(A)$). The base change spectral sequence has the form

\[
E^2_{pq} = \text{Tor}_{p+q}^{U(\text{Lie}(A))}(k, A \otimes_k A^{op}), N) \implies \text{Tor}_{p+q}^{U(\text{Lie}(A))}(k, N),
\]

that is if A is flat over k then

\[
E^2_{pq} = \text{Tor}_{p+q}^{A \otimes_k A^{op}}(H_{q \text{Lie}}^1(A; A \otimes_k A^{op}), N) \implies \text{Tor}_{p+q}^{U(\text{Lie}(A))}(k, N).
\]

Because $k \otimes_{U(\text{Lie}(A))} (A \otimes A^{op}) \simeq A$ as a right $A \otimes A^{op}$-module, we have that the second boundary map gives a canonical homomorphism

\[
H_{q \text{Lie}}^1(A; N) \to H_n(A; N) \simeq E^2_{0n}.
\]
There is a homomorphism of standard chain complexes

$$(C_\bullet(Lie(A); N), \partial) \to (C_\bullet(A, N), b)$$

where

$$\partial(n \otimes a_1 \wedge \cdots \wedge a_n) := \sum_{i=1}^{n} (-1)^i (a_i.n - na_i) \otimes a_1 \wedge \cdots \wedge \hat{a}_i \wedge \cdots \wedge a_n$$

$$+ \sum_{1 \leq i < j \leq n} (-1)^{i+j} n \otimes [a_i, a_j] \wedge a_1 \wedge \cdots \wedge \hat{a}_i \wedge \cdots \wedge \hat{a}_j \wedge \cdots \wedge a_n$$

In the special case $N = A$ we obtain canonical homomorphism

$$H^{Lie}_n(A; \text{ad}) \to HH_n(A)$$

Example B.11. Hiper-Tor spectral sequences and K"unneth spectral sequence. For a right R-module M and a complex of left modules C_\bullet we define

$$\text{Tor}^R_p(M, C_\bullet) := H_n(P_\bullet \otimes_R C_\bullet)$$

where $P_\bullet \to M$ is a projective resolution of M. Then the first and second spectral sequence of a bicomplex $P_\bullet \otimes_R C_\bullet$ are as follows:

$$'E^1_{pq} = P_p \otimes_R H_q(C)$$

$$'E^2_{pq} = \text{Tor}^R_p(M, H_q(C)) \Rightarrow \text{Tor}^R_{p+q}(M, C_\bullet)$$

and

$$''E^1_{pq} = \text{Tor}^R_q(M, C_p)$$

$$''E^2_{pq} = H_p(\text{Tor}^R_q(M, C_\bullet)) \simeq \begin{cases} H_p(M \otimes_R C_\bullet) & q = 0 \\ 0 & q \neq 0 \end{cases}$$

where the isomorphism for E^2_{pq} holds if the complexes $\text{Tor}^R_q(M, C_\bullet)$ are acyclic for $q > 0$, for example if C_n are flat. Then we obtain a K"unneth spectral sequence

$$E^2_{pq} = \text{Tor}^R_p(M, H_q(C)) \Rightarrow H_{p+q}(M \otimes_R C_\bullet)$$

if $C_n = 0$ for $n \ll 0$.

Example B.12. If a group G acts on semigroup S and its representation V, then G acts on Bar-complex $(B_\bullet(S; V), b')$, where $B_q(S; V) = (kS)^{\otimes q} \otimes_k V$, and b' is a standard boundary operator. Then

$$\text{Tor}_{n,G}^l(G, B_\bullet(S; V)) =: H^G_n(S; V)$$

are the equivariant homology of a semigroup S with coefficients in representation V. In an analogous way one can define equivariant homology of a Lie algebra, Hochschild homology, singular homology of a topological space etc.