Dirac operators and Spin structures

Paul Baum

notes taken by:
Pawel Witkowski

March 15, 2006
Contents

1 Dirac operators and Spin structures 2
 1.1 The Dirac operator of \mathbb{R}^n 2
 1.1.1 Dirac operator .. 3
 1.1.2 Bott generator vector bundle 5
 1.2 Spin representation and Spinc 6
 1.2.1 Clifford algebras and spinor systems 10
Chapter 1

Dirac operators and Spin structures

1.1 The Dirac operator of \(\mathbb{R}^n \)

First we consider \(n \) even. We shall construct matrices

\[E_1, E_2, \ldots, E_n, \quad n = 2r \]

each \(E_j \) being \(2^r \times 2^r \) matrix of complex numbers. In fact each entry will be in \(\{0, 1, -1, i, -i\} \).

Properties of \(E_j \)

1. \(E_j^* = -E_j \),
2. each \(E_j \) is block anti-diagonal

\[E_j = \begin{bmatrix} 0 & * \\ * & 0 \end{bmatrix} \]

and each block has size \(2^{r-1} \times 2^{r-1} \),

3. \(E_j^2 = I_{2^r} \),
4. \(E_j E_k + E_k E_j = 0 \) for \(j \neq k \),
5. \(i^r E_1 E_2 \ldots E_n = \begin{bmatrix} I_{2^{r-1}} & 0 \\ 0 & -I_{2^{r-1}} \end{bmatrix} \)

We will proceed by induction on \(n \) even. For \(n = 2 \) we take

\[E_1 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \]

Suppose we have \(E_1, E_2, \ldots, E_n \) of size \(2^r \times 2^r \). Then we put first \(n \) matrices of size \(2^{r+1} \times 2^{r+1} \) as

\[\begin{bmatrix} 0 & E_1 \\ E_1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & E_2 \\ E_2 & 0 \end{bmatrix}, \ldots, \begin{bmatrix} 0 & E_n \\ E_n & 0 \end{bmatrix} \]

and two additional matrices

\[\begin{bmatrix} 0 & -I_{2^r} \\ I_{2^r} & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & iI_{2^{r-1}} & 0 \\ 0 & 0 & 0 & iI_{2^{r-1}} \\ iI_{2^{r-1}} & 0 & 0 & 0 \\ 0 & iI_{2^{r-1}} & 0 & 0 \end{bmatrix} \]
Example 1.1. For $n = 4$ we have

\[
E_1 = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \end{bmatrix},
\]

\[
E_3 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 0 & 0 & 0 & i \\ 0 & 0 & i & 0 \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{bmatrix},
\]

For n odd, $n = 2r + 1$, we define matrices E_1, E_2, \ldots, E_r satisfying

1. $E_j^* = -E_j$,
2. $E_2^j = I_{2r}$,
3. $E_j E_k + E_k E_j = 0$ for $j \neq k$,
4. $i^{r+1} E_1 E_2 \ldots E_n = I_{2r}$.

First if $n = 1$ we set

\[E_1 = [-i]. \]

Then for $n = 2r + 1$ we use $2r$ matrices $E_1, E_2, \ldots, E_{n-1}$ as for the even case and as the last one we put

\[\begin{bmatrix} -iI_{2r-1} & 0 \\ 0 & iI_{2r-1} \end{bmatrix}. \]

From E_1, E_2, \ldots, E_n we obtain:

1. The Dirac operator of \mathbb{R}^n (described above)
2. The Bott generator vector bundle on S^n (n even)
3. The spin representation of Spin$^c(n)$

1.1.1 Dirac operator

Now we can define **Dirac operator of** \mathbb{R}^n. For each n we set

\[D := \sum_{j=1}^n E_j \frac{\partial}{\partial x_j}. \]

Example 1.2. For $n = 1$ we have Dirac operator of \mathbb{R}

\[D = -i \frac{\partial}{\partial x}. \]

For $n = 2$

\[D = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \frac{\partial}{\partial x_1} + \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \frac{\partial}{\partial x_2}. \]
For $n = 2r$ and $n = 2r + 1$ D is an unbounded operator on the Hilbert space

$$L^2(\mathbb{R}^n) \oplus L^2(\mathbb{R}^n) \oplus \ldots \oplus L^2(\mathbb{R}^n).$$

D is a first order elliptic differential operator on

$$C_c^\infty(\mathbb{R}^n) \oplus C_c^\infty(\mathbb{R}^n) \oplus \ldots \oplus C_c^\infty(\mathbb{R}^n).$$

With this domain D is symmetric (that is D is formally self-adjoint) and D is essentially self-adjoint (that is D has unique self-adjoint extension). For n even

$$D = \begin{bmatrix} 0 & D_- \\ D_+ & 0 \end{bmatrix}$$

where D_- is the formal adjoint of D_+. We will describe these notions in a general context. Let \mathcal{H} be Hilbert space. An unbounded operator on \mathcal{H} is a pair (\mathcal{D}, T) such that

1. $\mathcal{D} \subset \mathcal{H}$ is a vector subspace of \mathcal{H},
2. \mathcal{D} is dense in \mathcal{H},
3. $T: \mathcal{D} \to \mathcal{H}$ is a \mathbb{C}-linear map,
4. (\mathcal{D}, T) is closeable, i.e. the closure of graph(T) in $\mathcal{H} \oplus \mathcal{H}$ is the graph of a \mathbb{C}-linear map

$$P(\text{graph}(T)) \to \mathcal{H}$$

$$P(u, v) = u.$$

An unbounded operator (\mathcal{D}, T) is symmetric if and only if

$$\langle Tu, v \rangle = \langle u, Tv \rangle \quad \forall \, u, v \in \mathcal{D}.$$

For an unbounded operator (\mathcal{D}, T) on \mathcal{H} let

$$\mathcal{D}(T^*) := \{ u \in \mathcal{H} \mid v \mapsto \langle u, Tv \rangle \text{ extends from } \mathcal{D} \text{ to } \mathcal{H} \text{ extends to be a bounded linear functional on } \mathcal{H} \}$$

For $u \in \mathcal{D}(T^*)$ and $v \in \mathcal{H}$ there exists

$$T^*: \mathcal{D}(T^*) \to \mathcal{H}$$

such that

$$\langle u, Tv \rangle = \langle T^*u, v \rangle.$$

Now (\mathcal{D}, T) is self-adjoint if and only if

$$(\mathcal{D}, T) = (\mathcal{D}(T^*), T^*).$$

Remark 1.3. Symmetric operator needs not to be self-adjoint, but a self-adjoint operator is symmetric.
Example 1.4. Take $C_c^\infty(\mathbb{R}) \subset L^2(\mathbb{R})$ and
\[
\mathcal{D} = \{ u \in L^2(\mathbb{R}) \mid -i \frac{du}{dx} \in L^2(\mathbb{R}) \text{ in the distribution sense} \}
\]
= \{ u \in L^2(\mathbb{R}) \mid x \hat{u} \in L^2(\mathbb{R}) \},
where \hat{u} is the Fourier transform of u and
\[
x: \mathbb{R} \to \mathbb{R}, \quad x(t) = t, \quad \forall t \in \mathbb{R}.
\]
Then $(C_c^\infty(\mathbb{R}), -i \frac{d}{dx})$ has unique self-adjoint extension $(\mathcal{D}, -i \frac{d}{dx})$.

Let D be Dirac operator of \mathbb{R}^n, $n = 2r$ or $2r + 1$.
\[
\Omega^1(\mathbb{R}^n) = \{ f \in C^\infty(\mathbb{R}^n) \}
\]
= \{ $f_1 dx_1 + f_2 dx_2 + \ldots + f_n dx_n \mid f_j: \mathbb{R}^n \to \mathbb{C}, j = 1, 2, \ldots, n$ \}
\[
\Omega^1(\mathbb{R}^n) \text{ acts on } C_c^\infty(\mathbb{R}^n) \oplus C_c^\infty(\mathbb{R}^n) \oplus \ldots \oplus C_c^\infty(\mathbb{R}^n)
\]
in the following way. Let
\[
\omega = f_1 dx_1 + f_2 dx_2 + \ldots + f_n dx_n,
\]
\[
s = (s_1, s_2, \ldots, s_{2r}), \quad s_l: \mathbb{R}^n \to \mathbb{C}, \quad l = 1, 2, \ldots, 2r.
\]
Then
\[
\omega s = \sum_{j=1}^n f_j E_j s.
\]
There is following Leibniz rule for D
\[
D(fs) = (df)s + f(Ds),
\]
\[
f: \mathbb{R}^n \to \mathbb{C}, \quad f \in C^\infty(\mathbb{R}^n), \quad df = \sum_{j=1}^n \frac{\partial f}{\partial x_j} dx_j.
\]

If M is C^∞-manifold, compact or non-compact, with or without boundary, $\dim M = M$, then the Dirac operator of M is an elliptic operator which is locally like the Dirac operator of \mathbb{R}^n.

1.1.2 Bott generator vector bundle

Let W be finite dimensional \mathbb{C}-vector space,
\[
T \in \text{Hom}_\mathbb{C}(W, W), \quad T^2 = -I.
\]
Then eigenvalues of T are $\pm i$ and there is decomposition
\[
W = W_i \oplus W_{-i},
\]
\[
W_i = \{ v \in W \mid Tv = iv \}
\]
\[
W_{-i} = \{ v \in W \mid Tv = -iv \}
\]
5
Assume that \(n \) is even, \(S^n \subset \mathbb{R}^{n+1} \)

\[
S^n = \{(a_1, a_2, \ldots, a_{n+1}) \in \mathbb{R}^n \mid a_1^2 + a_2^2 + \ldots + a_{n+1}^2 = 1\}.
\]

We have a map

\[
S^n \to M(2^r, \mathbb{C})
\]

\[(a_1, a_2, \ldots, a_{n+1}) \mapsto a_1 E_1 + a_2 E_2 + \ldots + a_{n+1} E_{n+1} =: F.
\]

From the properties of \(E_j \) we obtain

\[
F^2 = (a_1 E_1 + a_2 E_2 + \ldots + a_{n+1} E_{n+1})^2
\]

\[
= (-a_1^2 - a_2^2 - \ldots - a_{n+1}^2) I
\]

\[= -I
\]

so the eigenvalues of \(F \) are \(\pm i \).

The Bott generator vector bundle \(\beta \) on \(S^n \) is given by

\[
\beta_{(a_1, a_2, \ldots, a_{n+1})} := \text{i-eigenspace of } F
\]

\[
= \{v \in \mathbb{C}^{2^r} \mid F(v) = iv\}
\]

For \(n \) even and \(S^n \subset \mathbb{R}^{n+1} \) there is an isomorphism

\[
K^0(S^n) = \mathbb{Z} \oplus \mathbb{Z}
\]

\[
1 \quad \beta
\]

where 1 = \(S^n \times \mathbb{C} \).

1.2 Spin representation and \(\text{Spin}^c \)

Let \(G \) be a topological group, Hausdorff and paracompact, \(X \) topological space Hausdorff and paracompact. A **principal \(G \)-bundle** on \(X \) is a pair \((P, \pi)\) where

1. \(P \) is a Hausdorff and paracompact topological space with given continuous (right) action of \(G \)

\[
P \times G \to P
\]

\[(p, g) \mapsto pg \]

2. \(\pi: P \to X \) is a continuous map, mapping \(P \) onto \(X \)

such that given any \(x \in X \), there exists an open subset \(U \) of \(X \) with \(x \in U \) and a homeomorphism

\[
\varphi: U \times G \to \pi^{-1}(U)
\]

with

\[
\pi \varphi(u, g) = u \quad \forall (u, g) \in U \times G
\]

\[
\varphi(u, g_1 g_2) = \varphi(u, g_1) g_2 \quad \forall (u, g_1, g_2) \in U \times G \times G
\]

Such \(\varphi: U \times G \to \pi^{-1}(U) \) is referred to as a local trivialization.
Two principal G-bundles (P, π) and (Q, θ) are isomorphic if there exists a G-equivariant homeomorphism $f: P \to Q$ with commutativity in the diagram

\[
\begin{array}{ccc}
P & \xrightarrow{f} & Q \\ \downarrow \cong & \boxed{} & \downarrow \\ X & \xrightarrow{\theta} & \end{array}
\]

Let G, H be two topological groups and let (P, π), (G, θ) be a principal G-bundle and H-bundle on X. A homomorphism of principal bundles from (P, π) to (Q, θ) is a pair (η, ρ) such that

1. ρ is a homomorphism of topological groups $\rho: G \to H$
2. $P \to Q$ is a continuous map with commutativity in the diagrams

\[
\begin{array}{ccc}
P & \xrightarrow{\eta} & Q \\ \downarrow \cong & \boxed{} & \downarrow \\ X & \xrightarrow{\theta} & \end{array} \quad \begin{array}{ccc}
P & \xrightarrow{\eta \times \rho} & Q \times H \\ \downarrow \cong & \boxed{} & \downarrow \\ P & \xrightarrow{\eta} & Q \\ \boxed{} & \boxed{} & \boxed{\pi p = \theta(\eta p), \quad \eta(pg) = (\eta p)(\rho g)}
\end{array}
\]

A homomorphism of principal bundles on X will be denoted $\eta: P \to Q$ and $\rho: G \to H$ will be referred to as homomorphism of topological groups underlying η.

Lemma 1.5. Let $\eta: P \to Q$ be a homomorphism of principal bundles on X with underlying homomorphism of topological groups $\rho: G \to H$. Then for any $x \in X$ there exists an open subset U of X with $x \in U$ and local trivializations

\[
\varphi: U \times G \to \pi^{-1}(U) \\
\psi: U \times H \to \theta^{-1}(U)
\]

such that the diagram

\[
\begin{array}{ccc}
U \times G & \xrightarrow{\varphi} & \pi^{-1}(U) \\ \downarrow \mathrm{Id} \times \eta & \boxed{} & \boxed{\downarrow \eta} \\ U \times H & \xrightarrow{\psi} & \theta^{-1}(U)
\end{array}
\]

commutes.

Example 1.6. Let E be \mathbb{R}-vector bundle on X, $\dim_{\mathbb{R}}(E_p) = n$ for all $p \in X$. Denote

\[
\Delta(E) := \{(p, v_1, v_2, \ldots, v_n) \mid p \in X, v_1, v_2, \ldots, v_n \text{ form a vector space basis for } E_p}\]

$\Delta(E)$ is topologized by

\[
\Delta(E) \subset \underbrace{E \oplus E \oplus \ldots \oplus E}_{n}.
\]

Define an action

\[
\Delta(E) \times \mathrm{GL}(n, \mathbb{R}) \to \Delta(E)
\]
\[(p, v_1, v_2, \ldots, v_n), [a_{ij}] \mapsto (p, w_1, w_2, \ldots, w_n), \]
\[w_j = \sum_{i=1}^{n} a_{ij} v_i, \quad [a_{ij}] \in \text{GL}(n, \mathbb{R})\]

and a map
\[\theta: \Delta(E) \to X,\]
\[\theta(p, v_1, v_2, \ldots, v_n) = p.\]

Then \((\Delta(E), \theta)\) is a principal \(\text{GL}(n, \mathbb{R})\)-bundle on \(X\).

For \(n \geq 3\)
\[\pi_1(\text{SO}(n)) = \mathbb{Z}/2\mathbb{Z}\]
and \(\text{Spin}(n)\) is the unique non-trivial 2-fold cover of \(\text{SO}(n)\). It is a compact connected Lie group.

\[
\begin{array}{c}
\text{Spin}(n) \\
\downarrow \\
\text{SO}(n) \subset \text{GL}(n, \mathbb{R})
\end{array}
\]

There is an exact sequence
\[1 \to \mathbb{Z}/2\mathbb{Z} \to \text{Spin}(n) \to \text{SO}(n) \to 1\]

The group \(\mathbb{Z}/2\mathbb{Z}\) embeds in the \(\text{Spin}(n)\) and \(S^1\) as the \(\{1, -1\}\). We define
\[\text{Spin}^c(n) := S^1 \times_{\mathbb{Z}/2\mathbb{Z}} \text{Spin}(n).\]

Then there is an exact sequence
\[1 \to S^1 \to \text{Spin}^c(n) \to \text{SO}(n) \to 1\]

\(\text{Spin}^c(n)\) is a compact connected Lie group
\[
\begin{array}{c}
\text{Spin}(n) \\
\downarrow \\
\text{Spin}^c(n) \\
\downarrow \\
\text{SO}(n) \subset \text{GL}(n, \mathbb{R})
\end{array}
\]

Example 1.7. For \(n = 1\)
\[\text{Spin}(1) = \mathbb{Z}/2\mathbb{Z}, \quad \text{SO}(1) = 1\]
\[\text{Spin}^c(1) = S^1\]
\[\rho: S^1 \to \text{pt}.\]

For \(n = 2\)
\[\text{Spin}(2) = S^1 = \text{SO}(2)\]
\[\text{Spin}(2) \to \text{SO}(2)\]
\[\zeta \mapsto \zeta^2\]
and
\[\text{Spin}^c(2) = S^1 \times_{\mathbb{Z}/2\mathbb{Z}} \text{Spin}(2)\]
\[\rho(\lambda, \zeta) = \zeta^2.\]
Remark 1.8. Since $\text{SO}(n) \subset \text{GL}(n, \mathbb{R})$ we can view the standard map $\text{Spin}^c(n) \to \text{SO}(n)$ as $\text{Spin}^c(n) \to \text{GL}(n, \mathbb{R})$.

Definition 1.9. A Spinc datum for an \mathbb{R}-vector bundle $E \to X$ is a homomorphism of principal bundles

$$\eta: P \to \Delta(E),$$

where P is a principal Spin$^c(n)$-bundle on X ($n = \dim_{\mathbb{R}}(E_p)$) and the homomorphism of topological groups underlying η is the standard map

$$\rho: \text{Spin}^c(n) \to \text{GL}(n, \mathbb{R}).$$

Two Spinc data $\eta: P \to \Delta(E), \eta': P' \to \Delta(E)$ are isomorphic if there exists an isomorphism $f: P \to P'$ of principal Spin$^c(n)$-bundles on X with commutativity in the diagram

$$\begin{array}{ccc}
P & \xrightarrow{f} & P' \\
\downarrow & & \downarrow \\
\Delta(E) & \xrightarrow{\eta = \eta' \circ f} & \Delta(E)
\end{array}$$

Two Spinc data $\eta: P \to \Delta(E), \eta': P' \to \Delta(E)$ are homotopic if there exists a principal Spin$^c(n)$-bundle Q on X and a continuous map

$$\Phi: Q \times [0,1] \to \Delta(E)$$

such that

1. For $t \in [0,1]$ each

$$\Phi_t = \Phi(-,t): Q \to \Delta(E)$$

is a Spinc data.

2. $\Phi_0: Q \to \Delta(E)$ is isomorphic to $\eta: P \to \Delta(E)$

$\Phi_1: Q \to \Delta(E)$ is isomorphic to $\eta': P \to \Delta(E)$

Definition 1.10. A Spin$^c(n)$-structure for E is an equivalence class of Spin$^c(n)$ data, where the equivalence relation is homotopy.

A Spinc structure for an \mathbb{R}-bundle E determines an orientation of E. Let $w_1(E), w_2(E), \ldots$ be the Stiefel-Whitney classes of E, $w_j(E) H^j(X; \mathbb{Z}/2\mathbb{Z})$-Cech cohomology. Then E is orientable if and only if $w_1(E) = 0$.

A **spin manifold** is a C^∞ manifold M, $\dim M = n$, for which the structure group of the tangent bundle TM has been lifted from $\text{GL}(n, \mathbb{R})$ to $\text{Spin}(n)$. Such lifting is possible if and only if

$$w_1(M) = 0, \quad w_1(M) \in H^1(M; \mathbb{Z}/2\mathbb{Z})$$

and

$$w_2(M) = 0, \quad w_2(M) \in H^2(M; \mathbb{Z}/2\mathbb{Z}).$$

A **Spinc manifold** is a C^∞ manifold M, $\dim M = n$, for which the structure group of the tangent bundle TM has been lifted from $\text{GL}(n, \mathbb{R})$ to Spin$^c(n)$. Such lifting is possible if and only if

$$w_1(M) = 0,$$

and

$$w_2(M) \text{ is in the image of } H^2(M; \mathbb{Z}) \to H^2(M; \mathbb{Z}/2\mathbb{Z}).$$
Various well known structures on a manifold M make M into Spinc manifold

\[(\text{complex analytic}) \Downarrow\]

\[(\text{symplectic}) \xrightarrow{=} (\text{almost complex}) \Downarrow\]

\[(\text{contact}) \xrightarrow{=} (\text{stably almost complex}) \Downarrow\]

\[\text{Spin} \xrightarrow{=} \text{Spin}^c \Downarrow\]

\[(\text{oriented}) \Downarrow\]

A Spinc manifold can be thought of as an oriented manifold with a slight extra bit of structure. Most of the oriented manifolds which occur in practice are Spinc manifolds. Spinc structures behave very much like orientations. For example, an orientation on two of three \mathbb{R} vector bundles in a short exact sequence determine an orientation on the third vector bundle. Analogous assertions are true for Spinc structures.

Lemma 1.11 (Two out of three lemma). Let

\[0 \to E' \to E \to E'' \to 0\]

be an exact sequence of \mathbb{R} vector bundles on X. If Spinc structures are given for any two of E', E, E'' then a Spinc structure is determined for the third.

Corollary 1.12. If M is a Spinc manifold with boundary ∂M, then ∂M is in canonical way a Spinc manifold.

Proof. There is an exact sequence

\[0 \to T\partial M \to TM|_{\partial M} \to \partial M \times \mathbb{R} \to 0\]

\[\square\]

Remark 1.13. If E is orientable ($w_1(E) = 0$), then the set of all possible orientations of E is in 1-1 correspondence with $H^0(X; \mathbb{Z}/2\mathbb{Z})$. If E is Spinc-able ($w_1(E) = 0$ and $w_2(E) \in \text{im}(H^2(X; \mathbb{Z}) \to H^2(X; \mathbb{Z}/2\mathbb{Z}))$), then the set of all possible Spinc-structures for E is then in 1-1 correspondence with $H^0(X; \mathbb{Z}/2\mathbb{Z}) \times H^2(X; \mathbb{Z})$.

1.2.1 Clifford algebras and spinor systems

Let V be a finite dimensional \mathbb{R}-vector space, $\langle - , - \rangle$ a positive definite, symmetric, bilinear \mathbb{R}-valued inner product on V. We can form a tensor algebra

\[TV := \mathbb{R} \oplus V \oplus (V \otimes V) \oplus (V \otimes V \otimes V) \oplus \cdots\]

with multiplication given by composing the tensors, and then define **Clifford algebra**

\[\text{Cliff}(V) := TV/(v \otimes v + \langle v, v \rangle \cdot 1)\]
where \((v \otimes v + \langle v, v \rangle \cdot 1)\) denotes the two-sided ideal in \(TV\) generated by all elements of the form
\[
v \otimes v + \langle v, v \rangle \cdot 1, \quad v \in V, \quad 1 \in \mathbb{R}.
\]
As a vector space over \(\mathbb{R}\) \(\text{Cliff}(V)\) is canonically isomorphic to the exterior algebra
\[
\Lambda^* V = \mathbb{R} \oplus V \oplus \Lambda^2 V \oplus \ldots \Lambda^n V, \quad n = \dim_{\mathbb{R}} V.
\]
Let \(e_1, e_2, \ldots, e_n\) be an orthonormal basis of \(V\). The monomials
\[
e_1^{\epsilon_1} e_2^{\epsilon_2} \cdots e_n^{\epsilon_n}, \quad \epsilon_j \in \{0, 1\}
\]
form a vector space basis of \(\text{Cliff}(V)\). The canonical isomorphism of \(\mathbb{R}\)-vector spaces
\[
\text{Cliff}(V) \to \Lambda^* V
\]
is given by
\[
e_1^{\epsilon_1} e_2^{\epsilon_2} \cdots e_n^{\epsilon_n} \mapsto e_1^{\epsilon_1} \wedge e_2^{\epsilon_2} \wedge \ldots \wedge e_n^{\epsilon_n}.
\]
This isomorphism does not depend on the choice of orthonormal basis of \(V\).
\[
\dim_{\mathbb{R}}(\text{Cliff}(V)) = 2^n, \quad n = \dim_{\mathbb{R}} V.
\]
In \(\text{Cliff}(V)\) we have following identities
\[
e_j^2 = -1, \quad j = 1, 2, \ldots, n,
\]
\[
e_i e_j + e_j e_i = 0, \quad i \neq j.
\]
We can introduce \(\mathbb{Z}/2\mathbb{Z}\)-grading on \(\text{Cliff}(V)\) in the following way
\[
\text{Cliff}(V) = (\text{Cliff}(V))_0 \oplus (\text{Cliff}(V))_1,
\]
where \((\text{Cliff}(V))_0\) is an \(\mathbb{R}\)-vector space spanned by \(e_1^{\epsilon_1} e_2^{\epsilon_2} \cdots e_n^{\epsilon_n}\) with \(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n\) even, and \((\text{Cliff}(V))_1\) is an \(\mathbb{R}\)-vector space spanned by \(e_1^{\epsilon_1} e_2^{\epsilon_2} \cdots e_n^{\epsilon_n}\) with \(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n\) odd. This \(\mathbb{Z}/2\mathbb{Z}\)-grading does not depend on the choice of orthonormal basis of \(V\).

Take \(\mathbb{R}^n\) with the usual inner product
\[
S^{n-1} \subset \mathbb{R}^n \subset \text{Cliff}(\mathbb{R}^n).
\]
The elements of \(S^{n-1}\) are invertible in \(\text{Cliff}(\mathbb{R}^n)\). Let \(\text{Pin}(n)\) be the subgroup of the invertible elements of \(\text{Cliff}(\mathbb{R}^n)\) generated by \(S^{n-1}\). Then
\[
\text{Spin}(n) = \text{Pin}(n) \cap (\text{Cliff}(\mathbb{R}^n))_0
\]
\[
\rho: \text{Spin}(n) \to \text{SO}(n)
\]
\[
(\rho g)(x) = gxg^{-1}, \quad g \in S^{n-1}, \quad x \in \mathbb{R}^n.
\]
For \(n \geq 3\) this is the unique non-trivial 2-fold covering space of \(\text{SO}(n)\).

Consider complexification
\[
\text{Cliff}_\mathbb{C}(V) := \mathbb{C} \otimes_{\mathbb{R}} \text{Cliff}(V).
\]
Then \(\text{Cliff}_\mathbb{C}(V)\) is a \(C^*\)-algebra with
\[
v^* = -v
\]
for

\[v \in V \subset \text{Cliff}(V) \subset \text{Cliff}_\mathbb{C}(V). \]

Let

\[\text{Cliff}_\mathbb{C}(\mathbb{R}^n) := \mathbb{C}_\mathbb{R} \text{Cliff}(\mathbb{R}^n), \]

\[\text{Spin}^c(n) = S^1 \times \mathbb{Z}/2\mathbb{Z} \text{Spin}(n) \subset \text{Cliff}_\mathbb{C}(\mathbb{R}^n). \]

Then \(\text{Spin}^c(n) \) is a subgroup of the group of unitary elements of the \(C^* \)-algebra \(\text{Cliff}_\mathbb{C}(\mathbb{R}^n) \).

Let us now choose an orthogonal basis \(e_1, e_2, \ldots, e_n \) for even-dimensional \(\mathbb{R} \)-vector space \(V \), \(n = 2n = \dim_{\mathbb{R}}(V) \). Recall \(2^r \times 2^r \) matrices \(E_1, E_2, \ldots, E_n \) defined in the beginning of the chapter and then define a mapping

\[\text{Cliff}_\mathbb{C}(V) \to M(2^r, \mathbb{C}) \]

\[e_j \mapsto E_j, \quad j = 1, 2, \ldots, n. \]

This gives an isomorphism of \(C^* \)-algebras \(\text{Cliff}_\mathbb{C}(V) \) and \(M(2^r, \mathbb{C}) \). For an odd dimension \(n = 2r + 1 \) recall \(2^r \times 2^r \) matrices \(E_1, E_2, \ldots, E_n \) and define two mappings

\[\varphi_+: \text{Cliff}_\mathbb{C}(V) \to M(2^r, \mathbb{C}) \]

\[\varphi_+(e_j) = E_j, \quad j = 1, 2, \ldots, n, \]

\[\varphi_-: \text{Cliff}_\mathbb{C}(V) \to M(2^r, \mathbb{C}) \]

\[\varphi_-(e_j) = -E_j, \quad j = 1, 2, \ldots, n. \]

Then

\[\varphi_+ \oplus \varphi_- : \text{Cliff}_\mathbb{C}(V) \to M(2^r, \mathbb{C}) \oplus M(2^r, \mathbb{C}) \]

is an isomorphism of \(C^* \)-algebras.

Remark 1.14. This isomorphisms are non-canonical since they depend on the choice of an orthonormal basis for \(V \).

Let \(E \) be an \(\mathbb{R} \)-vector bundle on \(X \). Assume given an inner product \(\langle -, - \rangle \) for \(E \). Then define \(\text{Cliff}_\mathbb{C}(E) \) as a bundle of \(C^* \)-algebras over \(X \) whose fiber at \(p \in X \) is \(\text{Cliff}_\mathbb{C}(E_p) \).

Definition 1.15. An Hermitian module over \(\text{Cliff}_\mathbb{C}(E) \) is a complex vector bundle \(F \) on \(X \) with a \(\mathbb{C} \)-valued inner product \(\langle -, - \rangle \) and a module structure

\[\text{Cliff}_\mathbb{C}(E) \otimes F \to F \]

such that

1. \(\langle -, - \rangle \) makes \(F_p \) into a finite dimensional Hilbert space,
2. for each \(p \in X \), the module map

\[\text{Cliff}_\mathbb{C}(E_p) \to \mathcal{L}(F_p) \]

is a unital homomorphism of \(C^* \)-algebras.

Remark 1.16. Of course all structures here are assumed to be continuous. If \(X \) is a \(C^\infty \) manifold then we could take everything to be \(C^\infty \).
If E is oriented define a section ω of $\text{Cliff}_C(E)$ as follows. Given $p \in X$, choose a positively oriented orthonormal basis e_1, e_2, \ldots, e_n of E_p. For n even, $n = 2r$, set

$$\omega(p) = i^r e_1 e_2 \ldots e_{2r}.$$

For $n = 2r + 1$ odd

$$\omega(p) = i^{r+1} e_1 e_2 \ldots e_{2r+1}.$$

Then $\omega(p)$ does not depend on the choice of positively oriented orthonormal basis. In $\text{Cliff}_C(E_p)$ we have

$$(\omega(p))^2 = 1.$$

If n is odd, then $\omega(p)$ is in the center of $\text{Cliff}_C(E_p)$. Note that to define ω, E must be oriented. Reversing the orientation will change ω to $-\omega$.

Definition 1.17. Let E be an \mathbb{R}-vector bundle on X. A Spinor system for E is a triple $(\epsilon, \langle -, - \rangle, F)$ such that

1. ϵ is an orientation of E,
2. $\langle -, - \rangle$ is an inner product for E,
3. F is an Hermitian module over $\text{Cliff}_C(E)$ with each F_p an irreducible module over $\text{Cliff}_C(E_p)$,
4. if $n = \dim_{\mathbb{R}}(E_p)$ is odd, then $\omega(p)$ acts identically on F_p.

Remark 1.18. The irreducibility of F_p in (3) is equivalent to $\dim_{\mathbb{C}}(F_p) = 2^r$, where $n = 2r$ or $n = 2r + 1$. In (4) note that $\omega(p)^2 = 1$ so for n odd $\omega(p)$ is in the center of $\text{Cliff}_C(E_p)$. Hence irreducibility of F_p implies that $\omega(p)$ acts either by I or $-I$ on F_p. Thus (4) normalizes the matter by requiring that $\omega(p)$ acts as I. When $n = \dim_{\mathbb{R}}(E_p)$ is even no such normalization is made.

If $(\epsilon, \langle -, - \rangle, F)$ is a Spinor system for E, then F is referred to as the Spinor bundle. Suppose that $n = \dim_{\mathbb{R}}(E_p)$ is even. Let $F_p^+ (F_p^-)$ be the $+1 (-1)$ eigenspace of $\omega(p)$. We have a direct sum decomposition

$$F = F^+ \oplus F^-,$$

where F^+, F^- are $\frac{1}{2} - \text{Spin bundles}$. $F^+ (F^-)$ is a vector bundle of positive (negative) spinors.

Assume we have right and left actions of the group G on topological spaces X, Y

$$X \times G \rightarrow X$$

$$G \times Y \rightarrow Y$$

Then

$$X \times_G Y := X \times Y / \sim, \quad (xg, y) \sim (x, gy).$$

Example 1.19. Let E be an \mathbb{R}-vector bundle on X. Then

$$\Delta(E) \times_{\text{GL}(n, \mathbb{R})} \simeq E$$

$$((p, v_1, v_2, \ldots, v_n), (a_1, a_2, \ldots, a_n)) \mapsto a_1 v_1 + a_2 v_2 + \ldots + a_n v_n.$$
Let E be an \mathbb{R}-vector bundle on X. A Spinc datum
\[
\eta: P \to \Delta(E)
\]
determines a Spinor system $(\epsilon, \langle -, - \rangle, F)$ for E. For $p \in X$, given orientation ϵ, and inner product $\langle -, - \rangle$, an \mathbb{R}-basis v_1, v_2, \ldots, v_n of E_p is positively oriented and orthonormal if and only if
\[
(v_1, v_2, \ldots, v_n) \in \text{im}(\eta).
\]
The Spinor bundle for $n = 2r$ or $n = 2r + 1$
\[
F = P \times_{\text{Spin}^c(n)} \mathbb{C}^{2r}.
\]
We have to describe how Spin$^c(n)$ acts on \mathbb{C}^{2r}. For n odd Spin$^c(n)$ has an irreducible representation known as its spin representation
\[
\text{Spin}^c(n) \to \text{GL}(2^r, \mathbb{C}), \quad n = 2r + 1.
\]
For n even Spin$^c(n)$ has two irreducible representations known as its $\frac{1}{2}$–Spin representations
\[
\begin{align*}
\text{Spin}^c(n) & \to \text{GL}(2^{r-1}, \mathbb{C}), \\
\text{Spin}^c(n) & \to \text{GL}(2^{r-1}, \mathbb{C}), \quad n = 2r.
\end{align*}
\]
The direct sum
\[
\text{Spin}^c(n) \to \text{GL}(2^{r-1}, \mathbb{C}) \oplus \text{GL}(2^{r-1}, \mathbb{C}) \subset \text{GL}(2^r, \mathbb{C}),
\]
of these representations is the spin representation of Spin$^c(n)$.

Consider \mathbb{R}^n with its usual inner product and usual orthonormal basis e_1, e_2, \ldots, e_n
\[
\varphi: \text{Cliff}_\mathbb{C}(\mathbb{R}^n) \to M(2^r, \mathbb{C})
\]
\[
\varphi(e_j) = E_j, \quad j = 1, 2, \ldots, n.
\]
There is a canonical inclusion
\[
\text{Spin}^c(n) \subset \text{Cliff}_\mathbb{C}(\mathbb{R}^n)
\]
and φ restricted to Spin$^c(n)$ maps Spin$^c(n)$ to $2^r \times 2^r$ unitary matrices
\[
\text{Spin}^c(n) \to \text{U}(2^r) \subset \text{GL}(n, \mathbb{C}).
\]
This is Spin representation of Spin$^c(n)$ and Spin$^c(n)$ acts on GL$(2^r, \mathbb{C})$ acts on \mathbb{C}^{2r} via this representation.

Let M be C^∞ manifold, possibly ∂M non-empty, TM the tangent bundle of M. Then
\[
\begin{align*}
\left(\begin{array}{c}
\text{Spin}^c \text{ datum for } TM \\
\eta: P \to \Delta(TM)
\end{array} \right) \\
\downarrow
\left(\begin{array}{c}
\text{Spinor system for } TM \\
(\epsilon, \langle -, - \rangle, F)
\end{array} \right) \\
\downarrow
\left(\begin{array}{c}
\text{Dirac operator} \\
D: C^\infty_c(M, F) \to C^\infty_c(M, F)
\end{array} \right)
\end{align*}
\]
where F is the Spinor bundle on M and $C^\infty_c(M, F)$ are its C^∞ sections with compact support.

The Dirac operator
\[
D: C^\infty_c(M, F) \to C^\infty_c(M, F)
\]
is such that
1. D is \mathbb{C}-linear

\[D(s_1 + s_2) = Ds_1 + Ds_2, \]

\[D(\lambda s) = \lambda Ds, \quad s_1, s_2, s \in C_c^\infty(M, F), \quad \lambda \in \mathbb{C}. \]

2. If $f: M \to \mathbb{C}$ is a C^∞ function, then

\[D(fs) = (df)s + f(Ds). \]

3. If $s_1, s_2 \in C_c^\infty(M, F)$ then

\[\int_M (Ds_1(x), s_2(x))dx = \int_M (s_1(x), Ds_2(x))dx. \]

4. If $\dim M$ is even, then D is off-diagonal

\[F = F^+ \oplus F^- \]

\[D = \begin{bmatrix} 0 & D^- \\ D^+ & 0 \end{bmatrix} \]

$D: C_c^\infty(M, F) \to C_c^\infty(M, F)$ is an elliptic first-order differential operator. It can be viewed as an unbounded operator on the Hilbert space $L^2(M, F)$ with the scalar product

\[(s_1, s_2) := \int_M (s_1(x), s_2(x))dx.\]

Moreover it is a symmetric operator.

One proves existence of D by constructing it locally and patching together with a C^∞ partition of unity. The uniqueness of D is obtained by the fact that if D_0, D_1 satisfy conditions (1)-(4) above, then

\[D_0 - D_1: F \to F \]

is a vector bundle map, hence D_0, D_1 differ by lower order terms.

Example 1.20. Let n be even, $S^n \subset \mathbb{R}^{n+1}$, D-Dirac operator of S^n, F-Spinor bundle of S^n, $F = F^+ \oplus F^-$. \n
\[D: C_c^\infty(S^n, F) \to C_c^\infty(S^n, F) \]

\[D = \begin{bmatrix} 0 & D^- \\ D^+ & 0 \end{bmatrix} \]

\[D^+: C_c^\infty(S^n, F^+) \to C_c^\infty(S^n, F^-) \]

Then

\[\text{Index}(D^+) := \dim_\mathbb{C}(\ker D^+) - \dim_\mathbb{C}(\coker D^+). \]

Theorem 1.21.

\[\text{Index}(D^+) = 0. \]

We can tensor D^+ with the Bott generator vector bundle β from section (1.1.2)

\[D^+_\beta: C_c^\infty(S^n, F^+ \otimes \beta) \to C_c^\infty(S^n, F^- \otimes \beta). \]

Then we have

Theorem 1.22.

\[\text{Index}(D^+_\beta) = 1. \]